Open Access
Mechanics & Industry
Volume 21, Number 1, 2020
Article Number 105
Number of page(s) 18
Published online 07 January 2020
  1. M. Emami, E. Takacs, J. Vlachopoulos, Study of foaming mechanisms in rotational molding, ANTEC, 2010 [Google Scholar]
  2. M. Emami, M.R. Thompson, E. Takacs, J. Vlachopoulos, Rheological effects on foam processing in rotational molding, ANTEC, 2011 [Google Scholar]
  3. M. Emami, M.R. Thompson, E. Takacs, J. Vlachopoulos, Rheological aspects of rotational foam molding, PPS, 2011 [Google Scholar]
  4. M. Emami, E. Takacs, M.R. Thompson, J. Vlachopoulos, E. Maziers, Visual studies of model foam development for rotational molding processes, Adv. Poly. Technol. 32, 809–821 (2013) [CrossRef] [Google Scholar]
  5. E. Maziers, Skin-foam-skin TP-Seal® rotomolded structures: a new concept for the production of car bodies for urban mobility, Plastics Eng. 69, 40–42 (2013) [CrossRef] [Google Scholar]
  6. J.E. Arbaoui, Etude comparative et caractérisations mécaniques des structures sandwichs multicouches, Thèse, Université Paul Verlaine Metz, 2009 [Google Scholar]
  7. A. Mirzapour, M.H. Beheshty, M. Vafayan, The response of sandwich panels with rigid polyurethane foam cores under flexural loading, Iran. Polym. J. 14, 20182–20188 (2005) [Google Scholar]
  8. F.P. Yang, Q.Y. Lin, J.J. Jiang, Experimental study on fatigue failure and damage sandwich structure with PMI foam core, Fatigue Fract. Eng. Mater. Struct. 38, 456–465 (2015) [Google Scholar]
  9. K.S. Narayanaswamy, H.N. Vidyasagar, N. Ranapratap Reddy, Bending characteristics of open cell polymer foam sandwich structure, Procedia Mater. Sci. 5, 1906–1914 (2014) [CrossRef] [Google Scholar]
  10. A. Cernescu, J. Romanoff, Bending deflection of sandwich beams considering local effect of concentrated force, Compos. Struct. 134, 169–175 (2015) [Google Scholar]
  11. L.S. Sutherland, S.C. Guedes, Impact characterisation of low fibre-volume glass reinforced polyester circular laminated plates, Int. J. Impact Eng. 31, 1–23 (2005) [Google Scholar]
  12. J.P. Dear, H. Lee, S.A. Brown, Impact damage processes in composite sheet and sandwich honeycomb materials, Int. J. Impact Eng. 32, 130–154 (2005) [Google Scholar]
  13. R. Vignjevic, M. Meo, G. Marengo, The response of honeycomb sandwich panels under low-velocity impact loading, Int. J. Mech. Sci. 47, 1301–1325 (2005) [CrossRef] [Google Scholar]
  14. H.Y. Choua, A.P. Mouritz, M.K. Bannister, A.R. Bunsell, Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure, Compos. Part A Appl. Sci. Manuf. 70, 111–120 (2015) [Google Scholar]
  15. J.R. Kwon, G.J. Lyu, T.H. Lee, J.Y. Kim, Acoustic emission testing of repaired storage tank, Int. J. Press. Vessel Pipping 78, 373–378 (2001) [CrossRef] [Google Scholar]
  16. M. Burman, M. Battley, Acoustic emission monitoring of foam core sandwich composites, J Sandwich Struct. Mater. 1, 147–175 (1999) [CrossRef] [Google Scholar]
  17. I. Ben Ammar, C. Karra, A. El Mahi, R. El Guerjouma, M. Haddar, Mechanical behaviour and acoustic emission technique for detecting, Appl. Acoust. 86, 106–117 (2014) [Google Scholar]
  18. C. G'sell, J.J. Jonas, Yield and transient effects during the plastic deformation of solid polymers, J. Mater. Sci. 16, 1956–1974 (1981) [Google Scholar]
  19. A. Galeski, Strength and toughness of crystalline polymer systems, Prog. Polym. Sci. 28, 1643–1699 (2003) [Google Scholar]
  20. A. Pawlak, A. Galeski, A. Rozanski, Cavitation during deformation of semi-crystalline polymers, Prog. Poly. Sci. 39, 921–958 (2014) [CrossRef] [Google Scholar]
  21. S. Castagnet, Y. Deburck, Relative influence of microstructure and macroscopic triaxiality on cavitation damage in a semi-crystalline polymer, Mater. Sci. Eng. A Struct. Mater. 448, 56–66 (2007) [Google Scholar]
  22. C. G'sell, A. Dahoun, Evolution of microstructure in semi-crystalline polymers under large plastic deformation, Mater. Sci. Eng. 175, 183–199 (1994) [CrossRef] [Google Scholar]
  23. L. Lin, A.S. Argon, Structure and plastic deformation of polyethylene, J. Mater. Sci. 29, 294–323 (1994) [Google Scholar]
  24. C.J.G. Plummer, A. Goldberg, A. Ghanem, Micromechanisms of slow crack growth in polyethylene under constant tensile loading, Polymer 42, 9551–9564 (2001) [Google Scholar]
  25. H.B.H. Hamouda, M. Simoes-Betbeder, F. Grillon, P. Blouet, N. Billon, Creep damage mechanisms in polyethylene gas pipes, Polymer 42, 5425–5437 (2001) [Google Scholar]
  26. D. Betteridge, P.A. Connors, T. Lilley, N.R. Shoko, M.E.A. Cudby, D.G.M. Wood, Analysis of acoustic emissions from polymers, Polymer 24, 1206–1212 (1983) [Google Scholar]
  27. F. Ronkay, T. Czigany, Cavity formation and stress-oscillation during the tensile test of injection molded specimens made of PET, Polym. Bull. 57, 989–998 (2006) [CrossRef] [Google Scholar]
  28. J. Bohse, Acoustic emission characteristics of micro-failure processes in polymer blends and composites, Compos. Sci. Technol. 60, 1213–1226 (2000) [Google Scholar]
  29. R. Qian, T. Wang, J. Shen, Acoustic emission during stretching of polymers, Polym. Commun. 2, 168–175 (1983) [Google Scholar]
  30. A. Galeski, E. Piorkowska, L. Koenczoel, E. Baer, Acoustic emission during polymer crystallization, J. Polym. Sci. Part B Polym. Phys. 28, 1171–1186 (1990) [CrossRef] [Google Scholar]
  31. E.T. Teofilo, M.S. Rabello, The use of acoustic emission technique in the failure analysis of PET, Polym. Test. 45, 68–75 (2005) [Google Scholar]
  32. N. Casiez, S. Deschanel, T. Monnier, O. Lame, Acoustic emission from the initiation of plastic deformation of polyethylenes during tensile tests, Polymer 55, 6561–6568 (2014) [Google Scholar]
  33. F.P.C. Gomes, A. Bovell, G.P. Balamurugan, M.R. Thompson, K.G. Dunn, Evaluating the influence of contacting fluids on polyethylene using acoustic emissions analysis, Polym. Test. 39, 61–69 (2014) [Google Scholar]
  34. A. Nielsen, Acoustic emission source based on pencil lead breaking, The Danish Welding Institute Publication 80, 15–20 (1980) [Google Scholar]
  35. K. Jemielniak, Some aspects of acoustic emission signal pre-processing, J. Mater. Proc. Tech. 109, 242–247 (2001) [CrossRef] [Google Scholar]
  36. A. Malpot, Etude du comportement en fatigue d'un composite à matrice polyamide renforcé d'un tissue de fibres de verre pour application automobile, Thèse, ENSMA, 2017 [Google Scholar]
  37. JC MS-III B5706, Monitoring method for active cracks in concrete by acoustic emission, Japan: Federation of Construction Materials Industries, 2003 [Google Scholar]
  38. K. Ohno, M. Ohtsu, Crack classification in concrete based on acousyic emission, Const. Buld. Mater. 24, 2339–2346 (2010) [CrossRef] [Google Scholar]
  39. M. Ohtsu, The history and development of acoustic emission in concrete engineering, Mag. Concr. Res. 48, 321–330 (1996) [CrossRef] [Google Scholar]
  40. J. Yamabe, T. Matsumoto, S. Nishimura, Application of acoustic emission method to detection of internal fracture of sealing rubber material by high-pressure hydrogen decompression, Polym. Test. 30, 76–85 (2011) [Google Scholar]
  41. S. Yuyama, T. Kishi, Y. Hisamatsu, Effect of environmental, mechanical conditions, and materials characteristic on AE behaviour during corrosion fatigue processes of an austenitic stainless steel, Nucl. Eng. Des. 81, 345–355 (1984) [CrossRef] [Google Scholar]
  42. A. Marquez-Lucero, C. G'sell, K.W. Neale, Experimental investigation of neck propagation in polymers, Polymer 30, 636–642 (1989) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.