Open Access
Mechanics & Industry
Volume 21, Number 1, 2020
Article Number 108
Number of page(s) 6
Published online 07 January 2020
  1. L. Barbulovic-Nad, J.G. Lenard, The effect of tallow concentration on the cold rolling of steel strips, J. Mater. Process. Technol. 142, 65–71 (2003) [CrossRef] [Google Scholar]
  2. A. He, S. Huang, J.-H. Yun, H. Wu, Z. Jiang, J. Stokes, S. Jiao, L. Wang, H. Huang, Tribological performance and lubrication mechanism of alumina nanoparticle water-based suspensions in ball-on-three-plate testing, Tribol. Lett. 65, 40–50 (2017) [Google Scholar]
  3. A. Azushima, Tribology in Sheet Rolling Technology, Springer International Publishing, 2016 [CrossRef] [Google Scholar]
  4. S.P. Darminesh, N.A.C. Sidik, G. Najafi, R. Mamat, T.L. Ken, Y. Asako, Recent development on biodegradable nanolubricant: A review, Int. Commun. Heat Mass Transfer 86, 159–165 (2017) [CrossRef] [Google Scholar]
  5. S.A. Angayarkanni, J. Philip, Review on thermal properties of nanofluids: recent developments, Adv. Colloid Interface Sci. 225, 146–176 (2015) [CrossRef] [PubMed] [Google Scholar]
  6. K.S. Suganthi, K.S. Rajan, Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance, Renew. Sustain. Energy Rev. 76, 226–255 (2017) [CrossRef] [Google Scholar]
  7. F.L. Guzman Borda, S.J. Ribeiro de Oliveira, L.M. Seabra Monteiro Lazaro, A.J. Kalab Leiróz, Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles, Tribol. Int. 117, 52–58 (2018) [Google Scholar]
  8. D. Li, B. Hong, W. Fang, Y. Guo, R. Lin, Preparation of well-dispersed silver nanoparticles for oil-based nanofluids, Ind. Eng. Chem. Res. 49, 1697–1702 (2010) [Google Scholar]
  9. A. Bahramian, K. Raeissi, A. Hakimizad, An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating, Appl. Surf. Sci. 351, 13–26 (2015) [Google Scholar]
  10. T. Luo, X. Wei, X. Huang, L. Huang, F. Yang, Tribological properties of Al2O3 nanoparticles as lubricating oil additives, Ceram. Int. 40, 7143–7149 (2014) [Google Scholar]
  11. Y. Bao, J. Sun, L. Kong, Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling, Tribol. Int. 114, 257–263 (2017) [Google Scholar]
  12. P.U. Aldana, B. Vacher, T. Le Mogne, M. Belin, B. Thiebaut, F. Dassenoy, Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime, Tribol. Lett. 56, 249–258 (2014) [Google Scholar]
  13. H. Wu, B. Johnson, L. Wang, G. Dong, S. Yang, J. Zhang, High-efficiency preparation of oil-dispersible MoS2 nanosheets with superior anti-wear property in ultralow concentration, J. Nanoparticle Res. 19, 339–349 (2017) [CrossRef] [Google Scholar]
  14. B.-C. Ku, Y.-C. Han, J.-E. Lee, J.-K. Lee, S.-H. Park, Y.-J. Hwang, Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity, Int. J. Precis. Eng. Manufactur. 11, 607–611 (2010) [CrossRef] [Google Scholar]
  15. A.K. Rasheed, M. Khalid, W. Rashmi, T.C.S.M. Gupta, A. Chan, Graphene based nanofluids and nanolubricants − Review of recent developments, Renew. Sustain. Energy Rev. 63, 346–362 (2016) [CrossRef] [Google Scholar]
  16. A. He, S. Huang, J.-H. Yun, Z. Jiang, J. Stokes, S. Jiao, L. Wang, H. Huang, The pH-dependent structural and tribological behaviour of aqueous graphene oxide suspensions, Tribol. Int. 116, 460–469 (2017) [Google Scholar]
  17. O. Elomaa, V.K. Singh, A. Iyer, T.J. Hakala, J. Koskinen, Graphene oxide in water lubrication on diamond-like carbon vs. stainless steel high-load contacts, Diamond Related Mater. 52, 43–48 (2015) [CrossRef] [Google Scholar]
  18. H.-J. Song, N. Li, Frictional behavior of oxide graphene nanosheets as water-base lubricant additive, Appl. Phys. A 105, 827–832 (2011) [CrossRef] [Google Scholar]
  19. C. Zhao, A study of tribological properties of water-based ceria nanofluids, Tribol. Lubricat. Technol. 73, 56–65 (2012) [Google Scholar]
  20. K. Gu, B. Chen, Y. Chen, Preparation and tribological properties of lanthanum-doped TiO2 nanoparticles in rapeseed oil, J. Rare Earths 31, 589–594 (2013) [CrossRef] [Google Scholar]
  21. C. Boshui, G. Kecheng, F. Jianhua, W. Jiang, W. Jiu, Z. Nan, Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant, Appl. Surf. Sci. 353, 326–332 (2015) [Google Scholar]
  22. R.A. Andrievski, A.V. Khatchoyan, Nanomaterials in extreme environments: fundamentals and applications, MRS Bull. (2016) [Google Scholar]
  23. S. Shahnazar, S. Bagheri, S.B. Abd Hamid, Enhancing lubricant properties by nanoparticle additives, Int. J. Hydrogen Energy 41, 3153–3170 (2016) [Google Scholar]
  24. D. Maharaj, B. Bhushan, Friction, wear and mechanical behavior of nano-objects on the nanoscale, Mater. Sci. Eng. R 95, 1–43 (2016) [CrossRef] [Google Scholar]
  25. G. Dan, X. Guoxin, L. Jianbin, Mechanical properties of nanoparticles: basics and applications, J. Phys. D: Appl. Phys. 47, 1–25 (2014) [Google Scholar]
  26. W. Dai, B. Kheireddin, H. Gao, H. Liang, Roles of nanoparticles in oil lubrication, Tribol. Int. 102, 88–98 (2016) [Google Scholar]
  27. M. Bahiraei, Particle migration in nanofluids: a critical review, Int. J. Therm. Sci. 109, 90–113 (2016) [Google Scholar]
  28. T. Sui, B. Song, F. Zhang, Q. Yang, Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin, RSC Adv. 6, 393–402 (2016) [Google Scholar]
  29. T. Sui, B. Song, F. Zhang, Q. Yang, Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin, J. Nanomater. 2015, 1–9 (2015) [Google Scholar]
  30. J.A. Ranga Babu, K.K. Kumar, S. Srinivasa Rao, State-of-art review on hybrid nanofluids, Renew. Sustain. Energy Rev. 77, 551–565 (2017) [CrossRef] [Google Scholar]
  31. W. Xia, J. Zhao, H. Wu, S. Jiao, X. Zhao, X. Zhang, J. Xu, Z. Jiang, Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO2 nanoparticles, Wear 396–397, 162–171 (2018) [Google Scholar]
  32. E. Gnecco, E. Meyer, Fundamentals of Friction and Wear on the Nanoscale, Springer International Publishing, 2015 [CrossRef] [Google Scholar]
  33. H. Wu, J. Zhao, W. Xia, X. Cheng, A. He, J.H. Yun, L. Wang, H. Huang, S. Jiao, L. Huang, S. Zhang, Z. Jiang, A study of the tribological behaviour of TiO2 nano-additive water-based lubricants, Tribol. Int. 109, 398–408 (2017) [Google Scholar]
  34. X. Yan, J. Sun, S. Xiong, Effects of lubricants on the rolling performances of cold rolled copper strips, Proc. Eng. 207, 2227–2232 (2017) [CrossRef] [Google Scholar]
  35. H. Wu, J. Zhao, X. Cheng, W. Xia, A. He, J.-H. Yun, S. Huang, L. Wang, H. Huang, S. Jiao, Z. Jiang, Friction and wear characteristics of TiO2 nano-additive water-based lubricant on ferritic stainless steel, Tribol. Int. 117, 24–38 (2018) [Google Scholar]
  36. H. Wu, J. Zhao, L. Luo, S. Huang, L. Wang, S. Zhang, S. Jiao, H. Huang, Z. Jiang, Performance evaluation and lubrication mechanism of water-based nanolubricants containing nano-TiO2 in hot steel rolling, Lubricants 6, 57–71 (2018) [Google Scholar]
  37. L. Gara, Q. Zou, Friction and wear characteristics of oil-based ZnO nanofluids, Tribol. Trans. 56, 236–244 (2013) [CrossRef] [Google Scholar]
  38. G. Liu, X. Li, B. Qin, D. Xing, Y. Guo, R. Fan, Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface, Tribol. Lett. 17, 961–966 (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.