Free Access
Issue
Mechanics & Industry
Volume 21, Number 2, 2020
Article Number 202
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2020002
Published online 05 February 2020
  1. T. Altan, G. Ngaile, G. Shen, eds., Cold And Hot Forging: Fundamentals And Applications. ASM International, 2004. [Google Scholar]
  2. J.-L. Chenot, M. Bernacki, P.-O. Bouchard, L. Fourment, E. Hachem, E. Perchat, in 11th International Conference on Technology of Plasticity, ICTP 2014, edited by M.K.-I. Ishikawa (Nagoya, Japan, 2014), vol. 81 [Google Scholar]
  3. J.-H. Cheng, N. Kikuchi, An analysis of metal forming processes using large deformation elastic-plastic formulations, Comput. Methods Appl. Mech. Eng. 49, 71–108 (1985) [Google Scholar]
  4. C. Bohatier, J.-L. Chenot, Finite element formulations for nonsteady-state large viscoplastic deformation, Int. J. Numer. Methods Eng. 21, 1697–1708 (1985) [Google Scholar]
  5. P. Hartley, I. Pillinger, Numerical simulation of the forging process, Comput. Methods Appl. Mech. Eng. 195, 6676–6690 (2006) [Google Scholar]
  6. J. Mackerle, Finite element modelling and simulation of bulk material forming: a bibliography (1996–2005), Eng. Comput. 23, 250–342 (2006) [Google Scholar]
  7. S. Badrinarayanan, N. Zabaras, A sensitivity analysis for the optimal design of metal-forming processes, Comput. Methods Appl. Mech. Eng. 129, 319–348 (1996) [Google Scholar]
  8. L. Fourment, J.L. Chenot, Optimal design for non-steady-state metal forming processes I. shape optimization method, Int. J. Numer. Methods Eng. 39, 33–50 (1996) [Google Scholar]
  9. L. Fourment, J.L. Chenot, T. Balan, Optimal design for non-steady-state metal forming processes ii. application of shape optimization in forging, Int. J. Numer. Methods Eng. 39, 51–65 (1996) [Google Scholar]
  10. P. Steinmann, P. Landkammer, A fast approach to shape optimization using the inverse FEM, in Material Forming ESAFORM 2014, vol. 611 of Key Engineering Materials. Trans Tech Publications (2014) 1404–1410 [Google Scholar]
  11. M. Ejday, L. Fourment, Metamodel assisted evolutionary algorithm for multi-objective optimization of non-steady metal forming problems, Int. J. Mater. Form. 3, 5–8 (2010) [CrossRef] [Google Scholar]
  12. C. Ciancio, T. Citrea, G. Ambrogio, L. Filice, R. Musmanno, Design of a high performance predictive tool for forging operation, Proc. CIRP 33, 173–178 (2015) [CrossRef] [Google Scholar]
  13. D.M. D’Addona, D. Antonelli, Neural network multiobjective optimization of hot forging, Proc. CIRP 67, 498–503 (2018) [CrossRef] [Google Scholar]
  14. J. Park, N. Rebelo, S. Kobayashi, A new approach to preform design in metal forming with the finite element method, Int. J. Mach. Tool Des. Res. 23, 71–79 (1983) [CrossRef] [Google Scholar]
  15. S. Germain, P. Landkammer, P. Steinmann, On a recursive formulation for solving inverse form finding problems in isotropic elastoplasticity, Advanced Modeling and Simulation in Engineering Sciences (2014), vol. 1, p. 10 [Google Scholar]
  16. P. Landkammer, S. Germain, P. Steinmann, On inverse form finding for orthotropic plasticity, Comput. Assist. Mech. Eng. Sci. 20, 337–348 (2014) [Google Scholar]
  17. Y.Q. Guo, J.L. Batoz, J.M. Detraux, P. Duroux, Finite element procedures for strain estimations of sheet metal forming parts, Int. J. Numer. Methods Eng. 30, 1385–1401 (1990) [Google Scholar]
  18. A. Halouani, Y. Li, B. Abbes, Y.-Q. Guo, An efficient axi-symmetric element based on inverse approach for cold forging modeling, Eng. Lett. 18 (2010) [Google Scholar]
  19. W. Gati, Y.Q. Guo, H. Naceur, J.-L. Batoz, Approche pseudo inverse pour estimation des contraintes dans les pieces embouties axisymetriques, Revue Eur. Elements Finis 12, 863–886 (2003) [Google Scholar]
  20. A. Halouani, Y.M. Li, B. Abbes, Y.Q. Guo, Simulation of axi-symmetrical cold forging process by efficient pseudo inverse approach and direct algorithm of plasticity, Finite Elements Anal. Des. 61, 85–96 (2012) [CrossRef] [Google Scholar]
  21. N. Rebelo, S. Kobayashi, A coupled analysis of viscoplastic deformation and heat transfer. I: Theoretical considerations. Int. J. Mech. Sci. 22, 699–705 (1980) [CrossRef] [Google Scholar]
  22. N. Rebelo, S. Kobayashi, A coupled analysis of viscoplastic deformation and heat transfer. II: Applications. Int. J. Mech. Sci. 22, 707–718 (1980) [CrossRef] [Google Scholar]
  23. A. Halouani, Y.M. Li, B. Abbès, Y.Q. Guo, A pseudo inverse approach with kinematically admissible intermediate configurations for the axi-symmetrical cold forging modelling, Adv. Mater. Res. 399, 1832–7 (2011) [CrossRef] [Google Scholar]
  24. J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press (2008) [CrossRef] [Google Scholar]
  25. R. Hill, On constitutive inequalities for simple materials—i, J. Mech. Phys. Solids 16, 229–242 (1968) [Google Scholar]
  26. W.M. Wang, L.J. Sluys, R. de Borst, Viscoplasticity for instabilities due to strain softening and strain-rate softening, Int. J. Numer. Methods Eng. 40, 3839–3864 (1997) [Google Scholar]
  27. W. Wang, L. Sluys, Formulation of an implicit algorithm for finite deformation viscoplasticity, Int. J. Solids Struct. 37, 7329–7348 (2000) [Google Scholar]
  28. A. Carosio, K. Willam, G. Etse, On the consistency of viscoplastic formulations, Int. J. Solids Struct. 37, 7349–7369 (2000) [Google Scholar]
  29. J.C. Simo, R.L. Taylor, A return mapping algorithm for plane stress elastoplasticity, Int. J. Numer. Methods Eng. 22, 649–670 (1986) [Google Scholar]
  30. Y.M. Li, B. Abbes, Y.Q. Guo, Two efficient algorithms of plastic integration for sheet forming modeling, J. Manufactur. Sci. Eng. 129, 698 (2007) [CrossRef] [Google Scholar]
  31. B. Abbes, Y.M. Li, A. Halouani, Y.Q. Guo, Fast plastic integration algorithms for forming process simulations, in Material Forming ESAFORM 2014, vol. 611 of Key Engineering Materials. Trans Tech Publications (2014) 1336–1343 [Google Scholar]
  32. G. Johnson, W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, The Hague (1983) 541–547 [Google Scholar]
  33. S.V. Stankus, I.V. Savchenko, A.V. Baginskii, O.I. Verba, A.M. Prokop’ev, R.A. Khairulin, Thermal conductivity and thermal diffusivity coefficients of 12kh18n10t stainless steel in a wide temperature range, High Temperature 46, 731–733 (2008) [CrossRef] [Google Scholar]
  34. A. Sobolev, M. Radchenko, Use of johnson–cook plasticity model for numerical simulations of the SNF shipping cask drop tests, Nucl. Energy Technol. 2, 272–276 (2016) [CrossRef] [Google Scholar]
  35. E. Corona, G.E. Orient, An evaluation of the johnson-cook model to simulate puncture of 7075 aluminum plates, tech. rep., Sandia National Laboratories, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.