Free Access
Issue
Mechanics & Industry
Volume 21, Number 2, 2020
Article Number 203
Number of page(s) 20
DOI https://doi.org/10.1051/meca/2020001
Published online 05 February 2020
  1. F. Alexandre, Probabilistic and microstructural aspects of fatigue crack initiation in the Inconel 718, dissertation, National School of Mines of Paris, 2004 [Google Scholar]
  2. F. Zamzemi, Characterization of Friction Models at Tool-Chip-to-Chip Interfaces: application to the Machining of Steel and Inconel 718, PhD thesis, Lyon Central School, 2007 [Google Scholar]
  3. M.A. Yallese, L. Boulanouar, K. Chaoui, Usinage de l'acier 100Cr6 trempé par un outil en nitrure de bore cubique, Mech. Ind. 5, 355–368 (2004) [Google Scholar]
  4. Z. Hessainia, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations, Measurement 46 (2013) [CrossRef] [Google Scholar]
  5. M.W. Azizi, S. Belhadi, M.A. Yallese, Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel, J. Mech. Sci. Technol. 26, 4105–4114 (2012) [CrossRef] [Google Scholar]
  6. B.A. Khidhir, B. Mohamed, Study of cutting speed on surface roughness and chip formation when machining nickel-based alloy, J. Mech. Sci. Technol. 24, 1053–1059 (2010) [CrossRef] [Google Scholar]
  7. E. Kaya, B. Akyüz, Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review, Open Eng. 7 (2017) [CrossRef] [Google Scholar]
  8. M. Sarikaya, V. Yılmaz, A. Güllü, Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy, J. Clean. Prod. 133, 172–181 (2016) [Google Scholar]
  9. S.M. Darwish, The impact of tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy, J. Mater. Process. Technol. 97, 10–18 (2000) [CrossRef] [Google Scholar]
  10. D. Tali, Machinability of Rene 41 Superalloy on Different Turning Parameters, PhD thesis, Eskişehir Osmangazi University, 2016 [Google Scholar]
  11. M. Sarikaya, M. Gullu, Taguchi design and response surface methodology-based analysis of machining parameters in CNC turning under MQL, J. Clean. Prod. 65, 604–616 (2014) [Google Scholar]
  12. D.M. D'Addonaa, S.J. Raykarb, M.M. Narke, High speed machining of Inconel 718: toolwear and surface roughness analysis, Proc. CIRP 62, 269–274 (2017) [CrossRef] [Google Scholar]
  13. W. Grzesik, P. Nieslony, W. Habrat, J. Sieniawski, Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement, Tribol. Int. 118, 337–346 (2017) [Google Scholar]
  14. W. Akthar, J. Sun, P. Sun, W. Chen, Tool wear mechanisms in the machining of Nickel based super-alloys: a review, Front. Mech. Eng. 9, 106–119 (2014) [Google Scholar]
  15. D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère, V. Zerrouki, J. Vigneau, A review of developments towards dry and high-speed machining of Inconel 718 alloy, Int. J. Mach. Tools Manuf. 44, 439–456 (2003) [CrossRef] [Google Scholar]
  16. H. Tebassi, M.A. Yallese, R. Khettabi, S. Belhadi, I. Meddour, F. Girardin, Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718, Int. J. Ind. Eng. Comput. 7, 111–134 (2016) [Google Scholar]
  17. H. Tebassi, M.A. Yallese, I. Meddour, F. Girardin, T. Mabrouki, On the modeling of surface roughness and cutting force when turning of Inconel 718 using artificial neural network and response surface methodology: accuracy and benefit, Period. Polytech. Mech. Eng. 61, 1–11 (2017) [CrossRef] [Google Scholar]
  18. H. Tebassi, M.A. Yallese, S. Belhadi, F. Girardin, Quality-productivity decision making when turning of Inconel 718 aerospace alloy: a response surface methodology approach, Int. J. Ind. Eng. Comput. 8, 347–362 (2017) [Google Scholar]
  19. S.R. Reddy, M.S. Kumar, V. Vasu, Temperature study in Turning Inconel-718: 3D Simulation and Experimentation, Mater. Today Proc. 4, 9946–9950 (2017) [Google Scholar]
  20. A.K. Parida, K. Maity, Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis, Eng. Sci. Technol. Int. J. 20, 687–693 (2017) [CrossRef] [Google Scholar]
  21. A. Mehta, S. Hemakumar, A. Patil, S.P. Khandke, P. Kuppan, R. Oyyaravelu, A.S.S. Balan, Influence of sustainable cutting environments on cutting forces, surface roughness and tool wear in turning of Inconel 718, Mater. Today Proc. 5, 6746–6754 (2018) [Google Scholar]
  22. S. Zhang, J.F. Li, Y.W. Wang, Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions, J. Clean. Prod. 32, 81–87 (2012) [Google Scholar]
  23. G. Kartheek, K. Srinivas, Ch. Devaraj, Optimization of Residual Stresses in Hard Turning of Super Alloy Inconel 718, Mater. Today Proc. 5, 4592–4600 (2018) [Google Scholar]
  24. A.K. Parida, B.C. Routara, R.K. Bhuyan, Surface roughness model and parametric optimization in machining of GFRP composite: Taguchi and Response surface methodology approach, Mater. Today Proc. 2, 3065–3074 (2015) [Google Scholar]
  25. M. Anthony Xavior, M. Manohar, M.M. Patil, P. Jeyapandiarajanl, Investigation of surface integrity during turning inconel 718, Trans. Canadian Soc. Mech. Eng. 41 (2017) [Google Scholar]
  26. M. Aruna, V. Dhanalaksmi, Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts, World Acad. Sci. Eng. Technol. Int. J. Mech. Mech. Eng. 6 (2012) [Google Scholar]
  27. A. Devillez, G. Le Coz, S. Dominiak, D. Dudzinski, Dry machining of Inconel 718, workpiece surface integrity, J. Mater. Process. Technol. 211, 1590–1598 (2011) [CrossRef] [Google Scholar]
  28. K. Sunil, D.S. Nirmal, S. Kalsi, Experimental Investigations of Surface Roughness of Inconel 718 under different Machining Conditions, Mater. Today Proc. 4, 1179–1185 (2017) [Google Scholar]
  29. D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan, Study on the machinability characteristics of superalloy Inconel 718 during high speed turning, Mater. Des. 30, 1718–1725 (2009) [Google Scholar]
  30. D. Xuan-Truong, T.M. Duc, Effect of cutting condition on tool wear and surface roughness during machining of Inconel 718, Int. J. Adv. Eng. Technol. 108, 108–112 (2013) [Google Scholar]
  31. K. Boulahem, S. Ben Salem, J. Bessrour, Prediction model of ultimate tensile strength and investigation on microstructural characterization of friction stir welded AA2024-T3, Int. J. Adv. Manuf. Technol. 95, 1473–1486 (2018) [Google Scholar]
  32. N.R. COSTA, J. Lourenço, Z.L. Pereira, Desirability function approach: a review and performance evaluation in adverse conditions, Chemometrics and Intelligent Laboratory Systems 107, 234–244 (2011) [CrossRef] [Google Scholar]
  33. A.-A. Selaimia, M.A. Yallese, H. Bensouilah, I. Meddour, R. Khattabi, T. Mabrouki, Modeling and optimization in dry face milling of X2CrNi18-9 austenitic stainless steel using RMS and desirability approach, Measurement 107, 53–67 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.