Open Access
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 403
Number of page(s) 14
Published online 06 May 2020
  1. T.L. Arneson, L.J. Melton, D.G. Lewallen, W.N. O'Fallon, Epidemiology of diaphyseal and distal femoral fractures in Rochester, Minnesota, 1965–1984, Clin. Orthopaed. Related Res. 234, 188–194 (1998) [Google Scholar]
  2. M. Zlowodzki, M. Bhandari, D.J. Marek, P.A. Cole, P.J. Kregor, Operative treatment of acute distal femur fractures: systematic review of 2 comparative studies and 45 case series(1989 to 2005), J. Orthopaedic Trauma 20, 366–371 (2006) [CrossRef] [Google Scholar]
  3. D.J. Johnstone, W.J.P. Radford, E.J. Parnell, Interobserver variation using the AO/ASIF classification of long bone fractures, Injury 24, 163–165 (1993) [PubMed] [Google Scholar]
  4. D.M. Kahler, Navigated long-bone fracture reduction, J. Bone Joint Surg. 91, 102–107 (2006) [Google Scholar]
  5. G.A. Ilizarov, V.I. Ledyaev, The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments, Clin. Orthop. Related Res. 280, 7–10 (1992) [Google Scholar]
  6. K. Seide, D. Wolter, H.R. Kortmann, Fracture reduction and deformity correction with the hexapod Ilizarov fixator, Clin. Orthopaed. Related Res. 363, 186–195 (1999) [CrossRef] [Google Scholar]
  7. L.N. Solomin, D. Paley, E.A. Shchepkina, V.A. Vilensky, P.V. Skomoroshko, A comparative study of the correction of femoral deformity between the Ilizarov apparatus and Ortho-SUV Frame, Int. Orthopaed. 38, 865–872 (2013) [CrossRef] [Google Scholar]
  8. P.V. Skomoroshko, V.A. Vilensky, A.I. Hammouda, M.D.A. Fletcher, L.N. Solomin, Mechanical rigidity of the Ortho-SUV frame compared to the Ilizarov frame in the correction of femoral deformity, Strat. Trauma Limb Reconstruc. 10, 5–11 (2015) [CrossRef] [Google Scholar]
  9. K. Seide, M. Faschingbauer, M.E. Wenzl, N. Weinrich, C.A. Juergens, A hexapod robot external fixator for computer assisted fracture reduction and deformity correction, Int. J. Med Robot. Comput. Assist. Surg. 1, 64–69 (2004) [CrossRef] [Google Scholar]
  10. D. Keshet, M. Eidelman, Clinical utility of the Taylor spatial frame for limb deformities, Orthop. Res. Rev. 9, 51–61 (2017) [PubMed] [Google Scholar]
  11. R.D. Gregorio, V. Parenti-Castelli, Kinematics of a six-dof fixation device for long-bone fracture reduction, J. Robotic Syst. 18, 715–722 (2001) [CrossRef] [Google Scholar]
  12. R.D. Gregorio, V. Parenti-Castelli, Fixation devices for long bone fracture reduction: an overview and new suggestions, J. Intell. Robot. Syst. 34, 265–278 (2002) [Google Scholar]
  13. J.C. Taylor, Perioperative planning for two- and three-plane deformities, Foot Ankle Clinics 13, 69–121 (2008) [CrossRef] [Google Scholar]
  14. M.J. Al-Sayyad, Taylor spatial frame in the treatment of pediatric and adolescent tibial shaft fractures, J. Pediat. Orthopaed. 26, 164–170 (2006) [CrossRef] [Google Scholar]
  15. P. Tang, L. Hu, H. Du, M. Gong, L. Zhang, Novel 3D hexapod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction, Int. J. Med. Robot. Comput Assist. Surg. 8, 17–24 (2012) [CrossRef] [Google Scholar]
  16. T. Wang, C. Li, L. Hu, P. Tang, L. Zhang, H. Du, S. Luan, L. Wang, Y. Tan, C. Peng, A removable hybrid robot system for long bone fracture reduction, Bio-Medical Mater. Eng. 24, 501–509 (2014) [CrossRef] [Google Scholar]
  17. M.H. Abedinnasab, J. Gallardo-Alvarado, F. Farahmand, A wide-open 3-legged parallel robot for long bone fracture reduction, J. Mech. Robot. 9, 015001 (2017) [Google Scholar]
  18. C.I. Moorroft, P.B.M. Thomas, P.J. Ogrodnick, S.A. Verborg, A device for improved reduction of tibial fractures treated with external fixation, Proc. Inst. Mech. Eng. H 214, 449–457 (2000) [CrossRef] [PubMed] [Google Scholar]
  19. Y.H. Kim, I. Nozomu, E.Y.S. Chao, Kinematic simulation of fracture reduction and bone deformity correction under unilateral external fixation, J. Biomech. 35, 1047–1058 (2002) [CrossRef] [PubMed] [Google Scholar]
  20. T.K.K. Koo, E.Y.S. Chao, A.F.T. Mak, Development and validation of a new approach for computer-aided long bone fracture reduction using unilateral external fixator, J. Biomech. 39, 2104–2112 (2006) [CrossRef] [PubMed] [Google Scholar]
  21. T.K.K. Koo, A.F.T. Mak, A knowledge-based computer-aided system for closed diaphyseal fracture reduction, Clin. Biomech. 22, 884–893 (2007) [CrossRef] [Google Scholar]
  22. B. Füchtmeier, S. Egersdoerfer, R. Mai, R. Hente, D. Dragoi, G. Monkman, M. Nerlich, Reduction of femoral shaft fractures in vitro by a new developed reduction robot system ‘RepoRobo’, Int. J. Care Injured 35, 113–119 (2004) [CrossRef] [Google Scholar]
  23. R. Westphal, T. Gösling, M. Oszwald, J. Bredow, D. Klepzig, S. Winkelbach, T. Hüfner, C. Krettek, F. Wahl, Robot assisted fracture reduction, Exp. Robot. 39, 153–163 (2008) [CrossRef] [Google Scholar]
  24. S. Joung, H. Kamon, H. Liao, J. Iwaki, T. Nakazawa, M. Mitsuishi, Y. Nakajima, T. Koyama, N. Sugano, Y. Maeda, M. Bessho, S. Ohshi, T. Matsumoto, I. Ohinshi, I. Sakuma, A robot assisted hip fracture reduction with a navigation system, Med. Image Comput. Comput. Assist. Intervent. 5242, 501–508 (2008) [Google Scholar]
  25. A.E. Graham, S.Q. Xie, K.C. Aw, W.L. Xu, S. Mukherjee, Robotic long bone fracture reduction, Medical Robotics, IntechOpen, 2008. [Google Scholar]
  26. H. Du, L. Hu, C. Li, T. Wang, L. Zhao, Y. Li, Z. Mao, D. Liu, L. Zhang, C. He, L. Zhang, H. Hou, L. Zhnag. P. Tamg, Advancing computer‐assisted orthopaedic surgery using a hexapod device for closed diaphyseal fracture reduction, Int. J. Med. Robot. Comp. Assist. Surg. 11, 348–359 (2015) [Google Scholar]
  27. M. Daniali, H.P. Zsombor-Murray, P.J. Angeles, The kinematics of 3-DoF planar and spherical double-triangular parallel manipulators, Comput. Kinem. Solid Mech. Appl. 28, 153–164 (1993) [Google Scholar]
  28. K.H. Hunt, Structural kinematics of in-parallel-actuated robot-arms, J. Mech. Trans. Autom. Design 105, 705–712 (1983) [CrossRef] [Google Scholar]
  29. Q. Li, Z. Chen, Q. Chen, C. Wu, X. Hu, Parasitic motion comparison of 3-PRS parallel mechanism with different limb arrangements, Robot. Comput. Integr. Manufact. 27, 389–396 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.