Open Access
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 404
Number of page(s) 9
Published online 06 May 2020
  1. W.Y. Akwetey, C.L. Knipe, Sensory attributes and texture profile of beef burgers with gari, Meat Sci. 92, 745–748 (2012) [CrossRef] [PubMed] [Google Scholar]
  2. L. Chen, U.L. Opara, Approaches to analysis and modeling texture in fresh and processed foods − a review, J. Food Eng. 119, 497–507 (2013) [Google Scholar]
  3. F. Costa et al., Assessment of apple (Malus × domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy, Postharvest Biol. Technol. 61, 21–28 (2011) [Google Scholar]
  4. E.H.J.H.-J. KIM, V.K. Corrigan, A.J. Wilson, I.R. Waters, D.I. Hedderley, M.P. Morgenstern, Fundamental fracture properties associated with sensory hardness of brittle solid foods, J. Texture Stud. 43, 49–62 (2012) [Google Scholar]
  5. D. Konopacka, W.J. Plocharski, Effect of storage conditions on the relationship between apple firmness and texture acceptability, Postharvest Biol. Technol. 32, 205–211 (2004) [Google Scholar]
  6. V. Stejskal et al., Sensory and textural attributes and fatty acid profiles of fillets of extensively and intensively farmed Eurasian perch (Perca fluviatilis L.), Food Chem. 129, 1054–1059 (2011) [PubMed] [Google Scholar]
  7. M. Taniwaki, K. Kohyama, Mechanical and acoustic evaluation of potato chip crispness using a versatile texture analyzer, J. Food Eng. 112, 268–273 (2012) [Google Scholar]
  8. R. Wang, W. Zhou, M. Isabelle, Comparison study of the effect of green tea extract (GTE) on the quality of bread by instrumental analysis and sensory evaluation, Food Res. Int. 40, 470–479 (2007) [Google Scholar]
  9. L. Chaunier, G. Della Valle, D. Lourdin, Relationships between texture, mechanical properties and structure of cornflakes, Food Res. Int. 40, 493–503 (2007) [Google Scholar]
  10. A. De Roeck, J. Mols, T. Duvetter, A. Van Loey, M. Hendrickx, Carrot texture degradation kinetics and pectin changes during thermal versus high-pressure/high-temperature processing: a comparative study, Food Chem. 120, 1104–1112 (2010) [Google Scholar]
  11. S. Farris, S. Gobbi, D. Torreggiani, L. Piergiovanni, Assessment of two different rapid compression tests for the evaluation of texture differences in osmo-air-dried apple rings, J. Food Eng. 88, 484–491 (2008) [Google Scholar]
  12. P. Greve, Y.S. Lee, J.F. Meullenet, B. Kunz, Improving the prediction for sensory texture attributes for multicomponent snack bars by optimizing instrumental test conditions, J. Texture Stud. 41, 358–380 (2010) [Google Scholar]
  13. L. Ragni, A. Berardinelli, A. Guarnieri, Impact device for measuring the flesh firmness of kiwifruits, J. Food Eng. 96, 591–597 (2010) [Google Scholar]
  14. V.B. Sasikala, R. Ravi, H.V. Narasimha, Textural changes of green gram (Phaseolus aureus) and horse gram (Dolichos biflorus) as affected by soaking and cooking, J. Texture Stud. 42, 10–19 (2011) [Google Scholar]
  15. D.N. Sila, C. Smout, F. Elliot, A. Van Loey, M. Hendrickx, Non-enzymatic depolymerization of carrot pectin: toward a better understanding of carrot texture during thermal processing, J. Food Sci. 71, E1–E9 (2006) [Google Scholar]
  16. A.P. Cherng, F. Ouyang, A firmness index for fruits of ellipsoidal shape, Biosyst. Eng. 86, 35 (2003) [Google Scholar]
  17. I. Shmulevich, N. Galili, M.S. Howarth, Nondestructive dynamic testing of apples for firmness evaluation, Postharvest Biol. Technol. 29, 287–299 (2003) [Google Scholar]
  18. M. Taniwaki, T. Hanada, N. Sakurai, Postharvest quality evaluation of ‘Fuyu’ and ‘Taishuu’ persimmons using a nondestructive vibrational method and an acoustic vibration technique, Postharvest Biol. Technol. 51, 80–85 (2009) [Google Scholar]
  19. L.T. Nguyen, A. Tay, V.M. Balasubramaniam, J.D. Legan, E.J. Turek, R. Gupta, Evaluating the impact of thermal and pressure treatment in preserving textural quality of selected foods, LWT-Food Sci. Technol. 43, 525–534 (2010) [CrossRef] [Google Scholar]
  20. S. Ichiro Iwatani, H. Yakushiji, N. Mitani, N. Sakurai, Evaluation of grape flesh texture by an acoustic vibration method, Postharvest Biol. Technol. 62, 305–309 (2011) [Google Scholar]
  21. M. Taniwaki, T. Hanada, N. Sakurai, Device for acoustic measurement of food texture using a piezoelectric sensor, Food Res. Int. 39, 1099–1105 (2006) [Google Scholar]
  22. M. Taniwaki, N. Sakurai, Texture measurement of cabbages using an acoustical vibration method, Postharvest Biol. Technol. 50, 176–181 (2008) [Google Scholar]
  23. B.V. Pamies, G. Roudaut, C. Dacremont, M. Le Meste, J.R. Mitchell, Understanding the texture of low moisture cereal products: mechanical and sensory measurements of crispness, J. Sci. Food Agric. 80, 1679–1685 (2000) [Google Scholar]
  24. M. Kristiawan, L. Chaunier, G. Della Valle, D. Lourdin, S. Guessasma, Linear viscoelastic properties of extruded amorphous potato starch as a function of temperature and moisture content, Rheol. Acta 55, 597–611 (2016) [Google Scholar]
  25. Z. Liu, M.G. Scanlon, Predicting mechanical properties of bread crumb, Food Bioprod. Process. 81, 224–238 (2003) [CrossRef] [Google Scholar]
  26. R. Kadowaki, H. Kimura, N. Inou, New estimation methods of Young's modulus and rupture strength of snack foods based on microstructure, J. Texture Stud. 47, 3–13 (2016) [Google Scholar]
  27. S. Thussu, A.K. Datta, Texture prediction during deep frying: a mechanistic approach, J. Food Eng. 108, 111–121 (2012) [Google Scholar]
  28. E.P. Popov, T.A. Balan, Engineering mechanics of solids , vol. 2. Prentice Hall Englewood Cliffs, NJ (1990) [Google Scholar]
  29. L. Mioche, M.A. Peyron, Bite force displayed during assessment of hardness in various texture contexts, Arch. Oral Biol. 40, 415–423 (1995) [CrossRef] [PubMed] [Google Scholar]
  30. K.R. Agrawal, P.W. Lucas, I.C. Bruce, J.F. Prinz, Food properties that influence neuromuscular activity during human mastication, J. Dent. Res. 77, 1931–1938 (1998) [CrossRef] [PubMed] [Google Scholar]
  31. K.R. Agrawal, P.W. Lucas, J.F. Prinz, I.C. Bruce, Mechanical properties of foods responsible for resisting food breakdown in the human mouth, Arch. Oral Biol. 42, 1–9 (1997) [CrossRef] [PubMed] [Google Scholar]
  32. S.H. Williams, B.W. Wright, V. den Truong, C.R. Daubert, C.J. Vinyard, Mechanical properties of foods used in experimental studies of primate masticatory function, Am. J. Primatol. 67, 329–346 (2005) [CrossRef] [PubMed] [Google Scholar]
  33. T. Takeshita, F. Nakazawa, Mastication velocity of the first molar in relation to the mechanical properties of food, J. Home Econ. Jpn. 58, 129 (2007) [Google Scholar]
  34. H. Dan, K. Kohyama, Interactive relationship between the mechanical properties of food and the human response during the first bite, Arch. Oral Biol. 52, 455–464 (2007) [CrossRef] [PubMed] [Google Scholar]
  35. M. Kiani Deh Kiani, H. Maghsoudi, S. Minaei, Determination of poisson's ratio and young's modulus of red bean grains, J. Food Process Eng. 34, 1573–1583 (2011) [Google Scholar]
  36. J.F.V. Vincent, Application of fracture mechanics to the texture of food, Eng. Fail. Anal. 11, 695–704 (2004) [Google Scholar]
  37. M.K. Krokida, V. Oreopoulou, Z.B. Maroulis, D. Marinos-Kouris, Effect of pre-treatment on viscoelastic behaviour of potato strips, J. Food Eng. 50, 11–17 (2001) [Google Scholar]
  38. M.K. Krokida, V. Oreopoulou, Z.B. Maroulis, D. Marinos-Kouris, Viscoelastic behaviour of potato strips during deep fat frying, J. Food Eng. 48, 213–218 (2001) [Google Scholar]
  39. M.C. Boyce, S. Socrate, P.G. Llana, Constitutive model for the finite deformation stress-strain behavior of poly (ethylene terephthalate) above the glass transition, Polyme 41, 2183–2201 (2000) [CrossRef] [Google Scholar]
  40. J.W. Hutchinson, K.W. Neale, Influence of strain-rate sensitivity on necking under uniaxial tension, Acta Metall. 25, 839–846 (1977) [CrossRef] [Google Scholar]
  41. S.R. Lakes, Viscoelastic solids . CRC Press (2018) [Google Scholar]
  42. T. van Vliet, Rheology and fracture mechanics of foods (2013) [Google Scholar]
  43. P. Mazumder, B.S. Roopa, S. Bhattacharya, Textural attributes of a model snack food at different moisture contents, J. Food Eng. 79, 511–516 (2007) [Google Scholar]
  44. M. Alvarez, W. Canet, M. Tortosa, Kinetics of thermal softening of potato tissue (cv. Monalisa) by water heating, Eur. Food Res. Technol. 212, 588–596 (2001) [Google Scholar]
  45. M.D. Alvarez, W. Canet, Kinetics of softening of potato tissue by temperature fluctuations in frozen storage, Eur. Food Res. Technol. 210, 273–279 (2000) [Google Scholar]
  46. A. Andersson, V. Gekas, I. Lind, F. Oliveira, R. Öste, J.M. Aguilfra, Effect of preheating on potato texture, Crit. Rev. Food Sci. Nutr. 34, 229–251 (1994) [CrossRef] [PubMed] [Google Scholar]
  47. Y.T. Huang, M.C. Bourne, Kinetics of thermal softening of vegetables, J. Texture Stud. 14, 1–9 (1983) [Google Scholar]
  48. A.R. Taherian, Thermal softening kinetics and textural quality of thermally processed vegetables , MSc Thesis, Dept. of Food Sc. and Agri. Chem., McGill Univ., Montreal, 1996. Available: [Google Scholar]
  49. K. Terzaghi, R.B. Peck, G. Mesri, Soil mechanics in engineering practice . John Wiley & Sons (1996) [Google Scholar]
  50. T. Gulati, A.K. Datta, Mechanistic understanding of case-hardening and texture development during drying of food materials, J. Food Eng. 166, 119–138 (2015) [Google Scholar]
  51. K.J. Niklas, Plant biomechanics: an engineering approach to plant form and function . University of Chicago Press (1992) [Google Scholar]
  52. E.E. Finney, C.W. Hall et al., Elastic properties of potatoes, Trans. ASAE 10, 4–8 (1967) [Google Scholar]
  53. V. Srivastava, S.A. Chester, N.M. Ames, L. Anand, A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, Int. J. Plast. 26, 1138–1182 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.