Free Access
Issue
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 410
Number of page(s) 31
DOI https://doi.org/10.1051/meca/2020028
Published online 15 June 2020
  1. M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd ed., Springer, Berlin, 1999 [Google Scholar]
  2. W. Chen, Linear Networks and Systems, World Scientific, Singapore, 1993 pp. 123–135 [Google Scholar]
  3. J. Paek, B. Kang, S. Kim, J. Hyun, Effective thermal conductivity and permeability of aluminum foam materials, Int. J. Thermophys. 21 , 453–464 (2000) [Google Scholar]
  4. E.N.P. Ranut, On the effective thermal conductivity of metal foams, J. Phys. Conf. Ser. 547 , 1 (2014) [Google Scholar]
  5. M. Mendes, P. Goetze, P. Talukdar, E. Werzner, C. Demuth, P. Rössger, R. Wulf, U. Gross, D. Trimis, S. Ray, Measurement and simplified numerical prediction of effective thermal conductivity of open-cell ceramic foams at high temperature, Int. J. Heat Mass Transf. 102 , 396–406 (2016) [Google Scholar]
  6. P. Cheng, C. Hsu, The effective stagnant thermal conductivity of porous media with periodic structures, J. Porous Media 2 , 19–38 (1999) [Google Scholar]
  7. R. Crane, R. Vachon, Prediction of the bounds on the effective thermal conductivity of granular materials, Int. J. Heat Mass Transf. 20 , 711–723 (1977) [Google Scholar]
  8. T. Bauer, A general approach toward the thermal conductivity of porous media, Int. J. Heat Mass Transf. 36 , 4148–4191 (1993) [Google Scholar]
  9. R. Dyga, S. Witczak, Investigation of effective thermal conductivity aluminum foams, Procedia Eng. 42 , 1088–1099 (2012) [Google Scholar]
  10. G. Wang, G. Wei, C. Xu, X. Ju, Y. Yang, X. Du, Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals, Appl. Therm. Eng. 147 , 464–472 (2019) [Google Scholar]
  11. X. Yang, J. Bai, H. Yan, J. Kuang, T. Lu, T. Kim, An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams, Transp. Porous Media 102 , 403–426 (2014) [Google Scholar]
  12. E. Sadeghi, S. Hsieh, M. Bahrami, Thermal contact resistance at a metal foam-solid surface interface, in ASME/JSME 2011 8th Thermal Engineering Joint Conference, Hawaii, USA, 2011 [Google Scholar]
  13. A. Bhattacharya, V. Calmidi, R. Mahajan, Thermophysical properties of high porosity metal foams, Int. J. Heat Mass Transf. 45 , 1017–1031 (2002) [Google Scholar]
  14. R.D. Boer, Theory of porous media − past and present, J. Appl. Math. Mech. 78 , 441–466 (1998) [Google Scholar]
  15. M.S. Phanikumara, R.L. Mahajanb, Non-Darcy natural convection in high porosity metal foams, Int. J. Heat Mass Transf. 45 , 3781–3793 (2002) [Google Scholar]
  16. P.I. Pelissari, R.A. Angélico, V.R. Salvini, D.O. Vivaldini, V.C. Pandolfelli, Analysis and modeling of the pore size effect on the thermal conductivity of alumina foams for high temperature applications, Ceram. Int. 43 , 13356–13363 (2017) [Google Scholar]
  17. C. Zhao, T. Lu, H. Hodson, J. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams, Mater. Sci. Eng. A 367 , 123–131 (2004) [CrossRef] [Google Scholar]
  18. J. Sauerhering, O. Reutter, T. Fend, S. Angel, R. Pitz-Paal, Temperature Dependency of the Effective Thermal Conductivity of Nickel Based Metal Foams, in ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels, Parts A and B, Limerick, Ireland, 2006 [Google Scholar]
  19. S. Brendelberger, S. Hötker, T. Fend, R. Pitz-Paal, Macroscopic foam model with effective material properties for high heat load applications, Appl. Therm. Eng. 47 , 34–40 (2012) [Google Scholar]
  20. Y. Asakuma, S. Miyauchi, T. Yamamoto, H. Aoki, T. Miura, Homogenization method for effective thermal conductivity of metal hydride bed, Int. J. Hydrogen Energy 29 , 209–216 (2004) [Google Scholar]
  21. B. Morkos, S.V.S. Dochibhatla, J.D. Summers, Effects of metal foam porosity, pore size and ligament geometry on fluid flow, J. Therm. Sci. Eng. Appl. 10 , 4 (2018) [Google Scholar]
  22. B. Ozmat, B. Leyda, B. Benson, Thermal application of open cell metal foams, Mater. Manuf. Process. 19 , 839–862 (2004) [CrossRef] [Google Scholar]
  23. K. Bodla, J. Murthy, S. Gaeimella, Resistance network-based thermal conductivity model for metal foams, Comput. Mater. Sci. 50 , 622–632 (2010) [Google Scholar]
  24. C. Hutter, A. Zenklusen, S. Kuhn, P.v. Rohr, Large eddy simulation of flow through a streamwise-periodic structure, Chem. Eng. Sci. 66 , 519–529 (2011) [Google Scholar]
  25. X. Yang, Y. Li, L. Zhange, L. Jin, W. Hu, T. Lu, Thermal and fluid transport in micro opencell, J. Heat Transf. 140 , 1 (2018) [Google Scholar]
  26. J. Bock, A. Jacobi, Geometric classification of open-cell metal foams using X-ray, Mater. Character. 75 , 35–43 (2013) [CrossRef] [Google Scholar]
  27. R. Gabbrielli, A new counter-example to Kelvin's conjecture on minimal surfaces, Philos. Mag. Lett. 89 , 483–491 (2009) [Google Scholar]
  28. R. Hamilton, O. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fund. 1 , 187–191 (1962) [CrossRef] [Google Scholar]
  29. Z. Hashin, S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. 33 , 3125–3131 (1962) [Google Scholar]
  30. G. Hadley, Thermal conductivity of packed metal powders, Int. J. Heat Mass Transf. 29 , 909–920 (1986). [Google Scholar]
  31. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, D. Smith, Thermal conductivity of highly porous zirconia, J. Eur. Ceram. Soc. 26 , 3567–3574 (2006) [Google Scholar]
  32. K. Boomsma, D. Poulikakos, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, Int. J. Heat Mass Transf. 44 , 827–836 (2001) [Google Scholar]
  33. V. Calmidi, R. Mahajan, The effective thermal conductivity of high porosity fibrous metal foams, ASME J. Heat Transf. 121 , 466–471 (1999) [CrossRef] [Google Scholar]
  34. Z. Dai, K. Nawaz, Y.G. Park, J. Bockb, M. Jacobi, Correcting and extending the Boomsma–Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams, Int. Commun. Heat Mass Transf. 37 , 575–580 (2010) [CrossRef] [Google Scholar]
  35. P. Zehner, E. Schlünder, Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen, Chem. Ing. Tech. 42 , 933–941 (1970) [Google Scholar]
  36. C. Hsu, P. Cheng, K. Wong, Modified zehner-schundler models for stagnant thermal conductivity of porous media, Int. J. Heat Mass Transf. 37 , 2751–2759 (1994) [Google Scholar]
  37. A. Behrang, S. Taheri, A. Kantzas, A hybrid approach on predicting the effective thermal conductivity, Int. J. Heat Mass Transf. 98 , 52–59 (2016) [Google Scholar]
  38. J. Kou, Y. Liu, F. Wu, J. Fan, H. Lu, Y. Xu, Fractal analysis of effective thermal conductivity for three-phase (unsaturated) porous media, J. Appl. Phys. 106 , 5 (2009) [Google Scholar]
  39. P. Kumar, F. Topin, Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of kelvin like foams, App. Therm. Eng. 71 , 536–547 (2014) [CrossRef] [Google Scholar]
  40. T. Uhlířová, W. Pabst, Thermal conductivity and Young's modulus of cubic-cell metamaterials, Ceram. Int. 45 , 954–962 (2019) [Google Scholar]
  41. R. Progelhof, J. Throne, R. Ruetsch, Methods for predicting the thermal conductivity of composite systems: A review, Polym. Eng. Sci. 16 , 615–625 (1976) [Google Scholar]
  42. R. Gabbrielli, A new counter-example to Kelvin's conjecture on minimal surfaces, Philos. Mag. Lett. 89 , 483–491 (2009) [Google Scholar]
  43. A. Kraynik, D. Reinelt, Linear elestic behavior of dry soap foams, J. Colloid. Interface Sci. 181 , 511–520 (1996) [Google Scholar]
  44. M. Haghighi, N. Kasiri, Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model, Braz. J. Chem. Eng. 27 , 127–135 (2010) [CrossRef] [Google Scholar]
  45. D. Edouard, The effective thermal conductivity for “slim” and “fat foams”, AIChE J. 57 , 1646–1651 (2011) [Google Scholar]
  46. A. Zenner, D. Edouard, Revised cubic model for theoretical estimation of effective thermal conductivity of metal foams, Appl. Therm. Eng. 113 , 1313–1318 (2017) [Google Scholar]
  47. T. Huu, M. Lacroix, C. Huu, D. Schweich, D. Edouard, Towards a more realistic modeling of solid foam: Use of the pentagonal dodecahedron geometry, Chem. Eng. Sci. 64 , 5131–5142 (2009) [Google Scholar]
  48. A. Evans, J. Hutchinson, M. Ashby, Cellular metals, Curr. Opin. Solid State Mater. Sci. 3 , 288–303 (1998) [Google Scholar]
  49. L. Giani, G. Groppi, E. Tronconi, Mass-transfer characterization of metallic foams as supports for structured catalysts, Ind. Eng. Chem. Res. 44 , 4993–5002 (2005) [Google Scholar]
  50. M. Lacroix, P. Nguyen, D. Schweich, C. Huu, S. Poncet, D. Edouard, Pressure drop measurements and modeling on SiC foams, Chem. Eng. Sci. 62 , 3259–3267 (2007) [Google Scholar]
  51. R. Singh, H. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams, Appl. Therm. Eng. 4 , 1841–1849 (2004) [Google Scholar]
  52. M. Mendes, V. Skibina, P. Talukdar, R. Wulf, U. Gross, Experimental validation of simplified conduction–radiation models for evaluation of Effective Thermal Conductivity of open-cell meta foams at high temperatures, Int. J. Heat Mass Transf. 78 , 112–120 (2014) [Google Scholar]
  53. R. Wulf, M. Mendes, V. Skibina, A. Al-Zoubi, D. Trimis, S. Ray, U. Gross, Experimental and numerical determination of effective thermal conductivity of open cell FeCrAl-alloy metal foams, Int. J. Therm. Sci. 86 , 95–103 (2014) [Google Scholar]
  54. P. Ranut, E. Nobile, L. Mancini, High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams, Appl. Therm. Eng. 69 , 230–240 (2014) [Google Scholar]
  55. K.K. Bodla, J. Murthy, S. Garimella, XMT-based direct simulation of flow and heat transfer through open-cell aluminum foams, in 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 2010 [Google Scholar]
  56. K. Al-Athel, A computational methodology for assessing the thermal behavior of metal foam heat sinks, Appl. Therm. Eng. 111 , 884–893 (2017) [Google Scholar]
  57. Y. Amani, A. Takahashi, P. Chantrenne, S. Maruyama, S. Dancette, E. Maire, Thermal conductivity of highly porous metal foams: Experimental and image based finite element analysis, Int. J. Heat Mass Transf. 122 , 1–10 (2018) [Google Scholar]
  58. M. Matsushita, M. Monde, Y. Mitsutake, Predictive calculation of the effective thermal conductivity in a metal hydride packed bed, Int. J. Hydrogen Energy. 39 , 9718–9725 (2014) [Google Scholar]
  59. R. Hamilton, O. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam. 1 , 187–191 (1962) [CrossRef] [Google Scholar]
  60. R. Coquard, D. Rochais, D. Baillis, Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures, Fire Technol. 699–732 , 48 (2012) [Google Scholar]
  61. J. Fourie, J.D. Plessis, Effective and coupled thermal conductivities of isotropic open-cellular foams, AIChE J. 50 , 547–556 (2004) [Google Scholar]
  62. E. Takegoshi, Y. Hirasawa, J. Matsuo, K. Okui, A study on the effective thermal conductivity of porous metals, Trans. Jpn. Soc. Mech. Eng. 58 , 879–884 (1992) [CrossRef] [Google Scholar]
  63. O. Krischer, Die wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology), Springer-Verlag, New York, 1963 [CrossRef] [Google Scholar]
  64. D.J. Thewsey, Y.Y. Zhao, Thermal conductivity of porous copper manufactured by the lost carbonate sintering process, Phys. Status Solidi 205 , 1126–1131 (2008) [CrossRef] [Google Scholar]
  65. E. Bianchi, T. Heidig, C. Visconti, G.G.H. Freund, E. Tronconi, An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors, Chem. Eng. J. 198–199 , 512–528 (2012) [Google Scholar]
  66. M. Fetoui, F. Albouchi, F. Rigollet, S. Ben Nasrallah, Highly porous metal foams: effective thermal conductivity measurement using a photothermal technique, J. Porous Media, 12 , 939–954 (2009) [CrossRef] [Google Scholar]
  67. E. Schmierer, J. Paquette, A. Razani, K. Kim, Effective Thermal Conductivity of Fully-Saturated High Porosity Metal Foam, in ASME 2004 Heat Transfer/Fluids Engineering Summer Conferenc, Charlotte, North Carolina, USA, 2004 [Google Scholar]
  68. N. Dukhan, K. Chen, Heat transfer measurements in metal foam subjected to constant heat flux, Exp. Therm. Fluid Sci. 32 , 624–631 (2007) [CrossRef] [Google Scholar]
  69. E.N. Schmierer, A. Razani, Self-consistent open-celled metal foam model for thermal applications, J. Heat Transf. 128 , 1194–1203 (2006) [CrossRef] [Google Scholar]
  70. E. Sadeghi, S. Hsieh, M. Bahrami, Thermal conductivity and contact resistance of metal, J. Phys. D: Appl. Phys. 44 , 125406 1–7 (2011) [CrossRef] [Google Scholar]
  71. X. Xiao, P. Zhang, M. Li, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl. Energy. 112 , 1357–1366 (2013) [Google Scholar]
  72. X. Xiao, P. Zhang, M. Li, Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage, Int. J. Therm. Sci. 81 , 94–105 (2014) [Google Scholar]
  73. R. Coquard, D. Rochais, D. Baillis, Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams, Int. J. Heat Mass Transf. 52 , 4907–4918 (2009) [Google Scholar]
  74. E. Solórzano, J. Reglero, M. Rodríguez-Pérez, D. Lehmhus, M. Wichmann, J.d. Saja, An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, Int. J. Heat Mass Transf. 51 , 6259–6267 (2008) [Google Scholar]
  75. P. Chen, X. Gao, Y. Wang, T. Xu, Y. Fang, Z. Zhang, Metal foam embedded inSEBS/paraffin/HDPE form-stable PCMs for thermal energy storage, Sol. Energy Mater. Sol. Cells 149 , 60–65 (2016) [Google Scholar]
  76. D. Wu, C. Huang, Thermal conductivity model of open-cell foam suitable for wide span of porosities, Int. J. Heat Mass Transf. 130 , 1075–1086 (2019) [Google Scholar]
  77. A. Abuserwal, E. Luna, R. Goodall, R. Woolley, The effective thermal conductivity of open cell replicated aluminium metal sponges, Int. J. Heat Mass Transf. 108 , 1439–1448 (2017) [Google Scholar]
  78. C. Wang, T. Lin, N. Li, H. Zheng, Heat transfer enhancement of phase change composite material: Copper foam/paraffin, Renew. Energy 96 , 960–965 (2016) [Google Scholar]
  79. J. Maxwell, A Treatise on Electricity and Magnetism, 3 edn., vol. 1, Dover Publication, INC, New York, 1904, p. 440 [Google Scholar]
  80. D. Bruggeman, Dielectric Constant and Conductivity of Mixtures of Isotropic Materials, Ann. Phys. 24 , 636–679 (1953) [Google Scholar]
  81. G.R. Hadley, Thermal conductivity of packed metal powders, Int. J. Heat Mass Transf. 29 , 909–920 (1986) [Google Scholar]
  82. Y. Yao, H. Wu, Z. Liu, A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams, Int. J. Therm. Sci. 97 , 56–67 (2015) [Google Scholar]
  83. L. Gong, Y. Wang, X.C.R. Zhang, H. Zhang, A novel effective medium theory for modelling the thermal conductivity of porous materials, Int. J. Heat Mass Transf. 68 , 295–298 (2014) [Google Scholar]
  84. A. Bhattacharya, Thermophysical properties and convective transport in metal foam and finned metal foam heat sinks, Ph.D. thesis, University of Colorado, Boulder, CO, 2001 [Google Scholar]
  85. H. Yang, M. Zhao, Z. Gu, L. Jin, J. Chai, A further discussion on the effective thermal conductivity of metal foam: An improved model, Int. J. Heat Mass Transf. 86 , 207–211 (2015) [Google Scholar]
  86. X. Yang, J. Kuang, T. Lu, F. Han, T. Kim, A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams, J. Phys. D: Appl. Phys. 46 , 25 (2013) [Google Scholar]
  87. P. Kumar, F. Topin, Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams, Appl. Therm. Eng. 71 , 536–547 (2014) [Google Scholar]
  88. G. Dul'nev, V. Novikov, Conductivity of nonuniform systems, J. Eng. Phys. 36 , 601–607 (1979) [CrossRef] [Google Scholar]
  89. C. Hsu, P. Cheng, K. Wong, A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media, ASME J. Heat Transf. 117 , 264–269 (1995) [CrossRef] [Google Scholar]
  90. J. Wang, J. Carson, J. Willix, M. North, D. Cleland, A symmetric and interconnected skeleton structural (SISS) model for predicting thermal and electrical conductivity and Young's modulus of porous foams, Acta Mater. 56 , 5138–5146 (2008) [Google Scholar]
  91. K. Singh, R. Singh, D. Chaudhary, Heat conduction and a porosity correction term for spherical and cubic particles in a simple cubic packing, J. Phys. D: Appl. Phys. 31 , 1681–1687 (1998) [CrossRef] [Google Scholar]
  92. Jagjiwanram, R. Singh, Effective thermal conductivity of real two-phase systems using resistor model with ellipsoidal inclusions, Bull. Mater. Sci. 27 , 373–381 (2004) [CrossRef] [Google Scholar]
  93. A. Ahern, G. Verbist, D. Waire, R. Phelan, H. Fleurent, The conductivity of foams: a generalisation of the electrical to the thermal case, Colloids Surf. A: Psycochem. Eng. Aspects 263 , 275–279 (2005) [CrossRef] [Google Scholar]
  94. T. Fiedler, E. Solórzano, A. Garcia-Moreno, F. Öchsner, I. Belova, G. Murch, Lattice monte carlo and experimental analyses of the thermal conductivity of random-shaped cellular aluminum, Adv. Eng. Mater. 11 , 843–847 (2009) [Google Scholar]
  95. R. Singh, S. Kumar, R. Beniwal, Bounding of effective thermal conductivity of two-phase materials, Defect Diffus. Forum 336 , 185–193 (2013) [CrossRef] [Google Scholar]
  96. R. Progelhof, J. Throne, R. Ruetsch, Methods for predicting the thermal conductivity of composite systems: a review, Polym. Eng. Sci. 16 , 615–625 (1976) [Google Scholar]
  97. T. Bauer, A general analytical approach toward the thermal conductivity of porous media, Int. J. Heat Mass Transf. 36 , 4181–4191 (1993) [Google Scholar]
  98. J. Stark, R. Prasad, T. Bergman, Experimentally validated analytical expressions for the thermal efficiencies and thermal resistances of porous metal foam-fins, Int. J. Heat Mass Transf. 111 , 1286–1295 (2017) [Google Scholar]
  99. S. Ayatollahi, N. Saber, M. Amani, A. Bitaab, Mathematical investigation of effective thermal conductivity in fractured porous media, J. Porous Media 9 , 625–635 (2006) [Google Scholar]
  100. K. Boomsma, D. Poulikakos, Y. Ventikos, Simulations of flow through open cell metal, Int. J. Heat Fluid Flow, 24 , 825–834 (2003) [CrossRef] [Google Scholar]
  101. B. Dietrich, G. Schell, E. Bucharsky, R. Oberacker, M. Hoffmann, W. Schabel, M. Kind, H. Martin, Determination of the thermal properties of ceramic sponges, Int. J. Heat Mass Tran. 53 , 198–205 (2010) [CrossRef] [Google Scholar]
  102. S. Ackermann, J. Scheffe, J. Duss, A. Steinfeld, Morphological characterization and effective thermal conductivity of dual-scale reticulated porous structures, Materials 7 , 7173–7195 (2014) [CrossRef] [Google Scholar]
  103. Jagjiwanram, R. Singh, Effective thermal conductivity of highly porous two-phase systems, Appl. Therm. Eng. 24 , 2727–2735 (2004) [Google Scholar]
  104. O. Krischer, Die wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology), Springer-Verlag, Berlin, 1963 [CrossRef] [Google Scholar]
  105. S. Kumar, R. Bhoopal, P. Sharma, R. Beniwal, R. Singh, Non-linear effect of volume fraction of inclusions on the effective thermal conductivity of composite materials: A modified maxwell model, Open J. Compos. Mater. 1 , 10–18 (2011) [CrossRef] [Google Scholar]
  106. M. Mendes, S. Ray, D. Trimis, A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures, Int. J. Heat Mass Tran. 66 , 412–422 (2013) [CrossRef] [Google Scholar]
  107. M. Mendes, S. Ray, D. Trimis, Evaluation of effective thermal conductivity of porous foams in presence of arbitrary working fluid, Int. J. Therm. Sci. 79 , 260–265 (2014) [Google Scholar]
  108. M. Mendes, S. Ray, D. Trimis, An improved model for the effective thermal conductivity of open-cell porous foams, Int. J. Heat Mass Transf. 75 , 224–230 (2014) [Google Scholar]
  109. M. Ashby, The properties of foams and lattices, Phil. Trans. R. Soc. 364 , 15–30 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  110. J.P. Du Plessis, J. Masliyah, Mathematical modelling of flow through consolidated isotropic porous media, Transp. Porous Media 3 , 145–161 (1988) [Google Scholar]
  111. G. Dulnev, Heat transfer through solid disperse systems, J. Eng. 9 , 275–279 (1965) [Google Scholar]
  112. B. Ozmat, B. Leyda, B. Benson, Thermal applications of open-cell metal foams, Mater. Manuf. Process. 19 , 839–862 (2004) [CrossRef] [Google Scholar]
  113. S. Krishnan, S. Garimella, J.Y. Murthy, Simulation of thermal transport in open-cell metal foams: Effects of periodic unit-cell structure, in ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, 2006. [Google Scholar]
  114. K. Pietrak, T. Wisniewski, A review of models for effective thermal conductivity of composite materials, J. Power Technol. 95 , 14–24 (2015) [Google Scholar]
  115. P. Talukdar, M. Mendes, R. Parida, D. Trimis, S. Ray, Modelling of conduction–radiation in a porous medium with blocked-off region approach, Int. J. Therm. Sci. 72 , 102–114 (2013) [Google Scholar]
  116. Q. Yu, B. Thompson, A. Straatman, A unit cube-based model for heat transfer and fluid flow in porous carbon foam, ASME J. Heat Transf. 128 , 352–360 (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.