Open Access
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 411
Number of page(s) 10
Published online 15 June 2020
  1. B.L. Mordike, T. Ebert, Magnesium: Properties-applications-potential, Mater. Sci. Eng. A 302 , 37 (2001) [CrossRef] [Google Scholar]
  2. E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment, J. Mater. Process. Technol. 117 , 381 (2001) [CrossRef] [Google Scholar]
  3. S. Fujisawa, A. Yonezu, Mechanical property of microstructure in die-cast magnesium alloy evaluated by indentation testing at elevated temperature, in: L. Ye, Recent Advances in Structural Integrity Analysis − Proceedings of the International Congress (APCF/SIF-2014), Sydney, Australia, 2014, pp. 422–426 [Google Scholar]
  4. K. Ishikawa, H. Watanabe, T. Mukai, High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures, Mater. Lett. 1511 (2005) [Google Scholar]
  5. A.H. Feng, Z.Y. Ma, Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing, Scr. Mater. 56 , 397 (2007) [Google Scholar]
  6. P. Cavaliere, P.P. De Marco, Fatigue behavior of friction stir processed AZ91 magnesium alloy produced by high pressure die casting, Mater. Charact. 58 , 226 (2007) [Google Scholar]
  7. Y. Wang, Y. Huang, X. Meng, L. Wan, J. Feng, Microstructural evolution, and mechanical properties of Mg-Zn-Y-Zr alloy during friction stir processing, J. Alloys Compd. 875 (2017) [Google Scholar]
  8. B. Mansoor, A.K. Ghosh, Microstructure, and tensile behavior of a friction stir processed magnesium alloy, Acta Mater. 60 , 5079 (2012) [Google Scholar]
  9. Y.S. Sato, S.H.C. Park, A. Matsunaga, A. Honda, H. Kokawa, Novel production for highly formable Mg alloy plate, J. Mater. Sci. 40 , 637 (2005) [Google Scholar]
  10. L. Xicai, C. Genghua, Z. Wen, Q. Cheng, Z. Datong, Ductility improvement of an AZ61 magnesium alloy through two-pass submerged friction stir processing, Mater (Basel) J 10 (2017) [Google Scholar]
  11. N. Gangil, S. Maheshwari, A.N. Siddiquee, Influence of tool pin and shoulder geometries on microstructure of friction stir processed AA6063/SiC composites, Mech. Ind. 19 , 211 (2018) [CrossRef] [Google Scholar]
  12. F. Kordestani, F.A. Ghasemi, N.B. Mostafa Arab, An investigation of FSW process parameters effects on mechanical properties of PP composites, Mech. Ind. 17 , 611 (2016) [CrossRef] [Google Scholar]
  13. A. Raja, V. Pancholi, Effect of friction stir processing on tensile, and fracture behavior of AZ91 alloy, J. Mater. Process Tech. 248 , 8 (2017) [CrossRef] [Google Scholar]
  14. Z. Lua, D. Zhangb, Microstructure, and mechanical properties of a fine-grained AZ91 magnesium, Mater. Sci. Forum . 850 , 778 (2016) [CrossRef] [Google Scholar]
  15. A. Heidarpour, S. Ahmadifard, N. Rohani, FSP pass number and cooling effect on microstructure, and properties of AZ31, J. Adv. Mater. Process 47 (2018) [Google Scholar]
  16. J. Edwin, S. Shamsudeen, Optimization of multiple performance characteristics of friction stir welded joint with grey relational analysis, J. Mater. Res. 21 , 421 (2018) [Google Scholar]
  17. M. Govindaraju, R.V. Vignesh, R. Padmanaban, Effect of heat treatment on the microstructure and mechanical properties of the friction stir processed AZ91D magnesium alloy, Met. Sci. Heat Treat. 61 , 311 (2019) [CrossRef] [Google Scholar]
  18. F. Chai, F. Yan, W. Wang, Q. Lu, X. Fang, Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing, J. Mater. Res. 33 , 1789 (2018) [Google Scholar]
  19. Z. Lu, D. Zhang, W. Zhang, C. Qiu, Microstructure and properties of AZ91 magnesium alloy prepared by multi-pass friction stir processing under different cooling conditions, J. Aeronaut. Mater. 36 , 33 (2016) [Google Scholar]
  20. R. Allavikutty, V. Pancholi, B.K. Mishra, Layered microstructure generated by multi-pass friction stir processing in AZ91 alloy and its effect on fatigue characteristics, in: S. Seetharamu, K. Rao, R.W. Khare, Proceedings of Fatigue, Durability and Fracture Mechanics (Lecture Notes in Mechanical Engineering) , Springer, Singapore (2018) pp. 213–216 [CrossRef] [Google Scholar]
  21. P. Asadi, R.A. Mahdavinejad, S. Tutunchilar, Simulation and experimental investigation of FSP of AZ91 magnesium alloy, Mater. Sci. Eng. A 528 , 6469 (2017) [CrossRef] [Google Scholar]
  22. Hibbitt, Karlsson, Sorensen (Pawtucket, R.I.), ABAQUS user manual, version 6.3, Rhode Island, 2002 [Google Scholar]
  23. Z. Yu, W. Zhang, H. Choo, Z. Feng, Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool, Metall. Mater. Trans. A 724 (2012) [Google Scholar]
  24. H.R. Shercliff, M.J. Russell, A. Taylor, T.L. Dickerson, Microstructural modelling in friction stir welding of 2000 series aluminium alloys, Méch. Ind. 6 , 25 (2005) [Google Scholar]
  25. S. Tutunchilar, M. Haghpanahi, M. Besharati Givi, Simulation of material flow in friction stir processing of a cast Al-Si alloy, Mater. Des. 40 , 415 (2012) [Google Scholar]
  26. J. Rahul, K. Surjya, S. Pal, Finite element simulation of pin shape influence on material flow forces in friction stir welding, Int. J. Adv. Manuf. Technol. 38 , 285 (2017) [Google Scholar]
  27. C. Chen, R. Kovacevic, Finite element modeling of friction stir welding—thermal and thermomechanical analysis, Int. J Mach. Tool. Manu. 43 , 1319 (2003) [CrossRef] [Google Scholar]
  28. S. Aljoaba, O. Dillon, M. Khraisheh, I. Jawahir, Modeling the effects of coolant application in friction stir processing on material microstructure using 3D CFD analysis, J. Mater. Eng. Perform. 21 , 1141 (2013) [Google Scholar]
  29. P.A. Colegrove, H.R. Shercliff, Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, J. Mater. Process Tech. 169 , 320 (2005) [CrossRef] [Google Scholar]
  30. Y. Chao, S. Liu, C. Chien, Friction stir welding of AL 6061-T6 thick plates: Part II, numerical modeling of the thermal and heat transfer phenomena, J. Chin. Inst. Eng. 31 , 769 (2008) [CrossRef] [Google Scholar]
  31. P. Ulysse, Three-dimensional modeling of the friction-stir-welding process, Int. J. Mach. Tools. Manuf. 42 , 1549 (2002) [Google Scholar]
  32. M. Chiumenti, M. Cervera, C. Agelet de Saracibar, N. Dialami, Numerical modeling of friction stir welding process, Comput. Methods. Appl. Mech. Eng. 254 , 353 (2013) [Google Scholar]
  33. A. Ajri, Y. Shin, Investigation on the effects of process parameters on defect formation in friction stir welded samples via predictive numerical modeling and experiments, J. Manuf. Sci. Eng. 139 , 111009 (2017) [Google Scholar]
  34. M.A. Ansari, A. Samanta, R. Abdi, H. Ding, An efficient coupled Eulerian-Lagrangian finite element model, Int. J. Adv. Manuf. Technol. 101 , 1495 (2019) [Google Scholar]
  35. M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Friction model for friction stir welding process simulation: calibrations from welding experiments, Int. J. Mach. Tools. Manuf. 50 , 143 (2010) [Google Scholar]
  36. S.S. Mirjavadi, M. Alipour, A.M.S. Hamouda, A. Matin, S. Kord, B.M. Afshari, P.G. Koppad, Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites, J. Alloy Compd. 8 , 84 (2017) [Google Scholar]
  37. H. Mainul, B. Latifa, Semi-continuous casting of magnesium alloy AZ91 using a filtered melt delivery system, J. Magn. Alloy. 3 , 283 (2015) [CrossRef] [Google Scholar]
  38. Y. Yuan, Q. Guo, J. Sun, High mechanical properties of AZ91 mg alloy processed by equal channel angular pressing and rolling, Metals 9 , 386 (2019) [Google Scholar]
  39. G.V. Raynor, The physical metallurgy of magnesium and its alloys, Pergamum Press, New York, 1959 [Google Scholar]
  40. G. Venkateswarlu, D. Devaraju, M. Davidson, B. Kotiveerachari, G.R.N. Tagore, Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy, J. Mater. Des. 45 , 480 (2013) [CrossRef] [Google Scholar]
  41. A. Alizadeh, The effect of overlapping on mechanical properties of AZ91, MS theses, Maraghe University, 2016 [Google Scholar]
  42. Standard Test Methods for Tension Testing of Metallic Materials E8/E8M −13a. [Google Scholar]
  43. R. Mahmudi, A.R. Geranmayeh, A. Rezaee, Impression creep behavior of lead-free Sn-5Sb solder alloy, Mater. Sci. Eng. 287 (2007) [Google Scholar]
  44. J. Xiao, I. Ahmad, D.W. Shu, Dynamic behavior and constitutive modeling of magnesium alloys AZ91D and AZ31B under high strain rate compressive loading, Mod. Phys. Lett. B 28 , 1450063 (2014) [Google Scholar]
  45. G.H. Majzoobi, F. Rahimi Dehgolan, Determination of the constants of damage models, Proc. Eng. 10 , 764 (2011) [CrossRef] [Google Scholar]
  46. V.E. Bazhenov, A.V. Petrova, A.V. Koltygin, Y.V. Tselovalnik, Determination of heat transfer coefficient between AZ91 magnesium alloy casting and no-bake mold, Tsvetnye Metally 89 (2017) [Google Scholar]
  47. P. Asadi, M. besharati givi, M. Akbari, Microstructural simulation of friction stir welding using a cellular automaton method: a microstructure prediction of AZ91 magnesium alloy, M. Int. J. Mech. Mater. Eng. 10 , 20 (2015) [CrossRef] [Google Scholar]
  48. Z. Zhang, J. Bie, H. Zhang, Effect of traverse/rotational speed on material deformations and temperature distributions in friction stir welding, J. Mater. Sci. Technol. 24 , 907 (2008) [Google Scholar]
  49. R.M. Miranda, J.P. Gandra, P. Vilaca, L. Quintino, T.G. Santos, Surface modification by solid state processing, Woodhead Publishing, United Kingdom, 2013 [Google Scholar]
  50. K.U. Kainer, Magnesium alloys and technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003 [CrossRef] [Google Scholar]
  51. K. Ishikawa, H. Watanabe, T. Mukai, High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures, Mater. Lett. 59 , 1511 (2005) [Google Scholar]
  52. V. Singh, S.K. Patel, A. Ranjan, B. Kuriachen, Recent research progress in solid state friction-stir welding of aluminum-magnesium alloys: a critical review, J. Mater. Res. Technol. (2020) [Google Scholar]
  53. J. Stephen, V. Jayakumar, Transient Heat input Model for Friction Stir welding using non-circular Tool Pin, FME Transactions 48 , 137 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.