Open Access
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 414
Number of page(s) 10
Published online 25 June 2020
  1. C. Subhash, R. Anjan, An experimental and numerical study of stagnation point heat transfer, for methane/air laminar flame impinging on a flat surface, Int. J. Heat Mass Transfer 51 , 3595–3607 (2008) [CrossRef] [Google Scholar]
  2. S. Yagi, D.K. Saji, Problems of turbulent diffusion and flame jet, Int. Symp. Combust. 4 , 771–781 (1953) [CrossRef] [Google Scholar]
  3. M.H. Vaccaro, Low NOx rotary kiln burner technology, design principles and case study, in Proceeding of IEEE-IAS/PCA 44th Cement Industry Technical Conference, Jacksonville, Florida, 2002, 265–270 [Google Scholar]
  4. A. Sobiesiak, S. Rahbar, H.A. Becker, Performance characteristics of the novel low-NOx CGRI burner for use with high air preheat, Combust. Flame. 115 , 93–125 (1998) [Google Scholar]
  5. A.A. Boateng, Rotary Kilns, Transport Phenomena and Transport Processes, 2nd edition, Elsevier (2015) [Google Scholar]
  6. R.C. Favalli, L.F. Fabiani, L.F. De Pinho, Enhancing the performance of kiln burner, in world cement, Brazil (2015) 111–117. [Google Scholar]
  7. V.K. Klassen, A.G. Novosyolov, I.N. Borisov, V.M. Konovalov, Management of clinker burning in the rotary kiln, aimed to improve the quality of cement and fuel economy, Middle-East J. Sci. Res. 15 , 1871–1876 (2013) [Google Scholar]
  8. M.N. Pedersen, M. Nielsen, S. Clausen, P.A. Jensen, L.S. Jensen, K. Dam-Johansen, Imaging of flames in cement kilns to study the influence of different fuel types, Energy Fuels 31 , 11424–11438 (2017) [Google Scholar]
  9. G.J. Nathan, J. Mi, Z.T. Alwahabi, G.J.R. Newbold, D.S. Nobes, Impacts of a jet's exit flow pattern on mixing and combustion performance, Progr. Energy Combust. Sci. 32 , 496–538 (2006) [CrossRef] [Google Scholar]
  10. F. Herz, M. liyan, S. Eckehard, S. Rayko, Influence of operational parameters and material properties on the contact heat transfer in rotary kilns, Int. J. Heat Mass Transfer. 55 , 7941–7948 (2012) [CrossRef] [Google Scholar]
  11. N.A. Magina, T.C. Lieuwen, Effect of axial diffusion on the response of diffusion flames to axial flow perturbations. Combust. Flame 167 , 395–408 (2016) [Google Scholar]
  12. A. Atmaca, R. Yumrutas, Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry, Appl. Therm. Eng. 66 , 435–444 (2014) [Google Scholar]
  13. C.G. Ilea, P. Kosinski, A.C. Hoffmann, Simulation of a dust lifting process with rough walls, Chem. Eng. Sci. 63 , 3864–3876 (2008) [Google Scholar]
  14. M. Pisaroni, R. Sadi, D. Lahaye, Counteracting ring formation in rotary kilns, Math. Ind. 2 , 1–19 (2012) [CrossRef] [Google Scholar]
  15. H. Tsoar, Bagnold RA 1941: The physics of blown sand and desert dunes. London: Methuen, Haim Tsoar, Progr. Phys. Geogr. 18 , 91–96 (1994) [Google Scholar]
  16. J.R. Fessler, D.K. Jonathan, J.K. Eaton, Preferential concentration of heavy particles in a turbulent channel flow, American Institute of Physics, Phys. Fluids. 6 , 3742–3749 (1994) [CrossRef] [Google Scholar]
  17. M. Hussainov, A. Kartushinsky, A.U. Rudi, I. Shcheglov, G. Kohnen, M. Sommerfeld, Experimental investigation of turbulence modulation by solid particles in a grid-generated vertical flow, Int. J. Heat Fluid Flow. 21 , 365–373 (2000) [Google Scholar]
  18. Ansys, inc, ANSYS Fluent Theory Guide, release 15.0, USA, 2013. [Google Scholar]
  19. C.M. Coats, Coherent structures in combustion, Energy Combust. Sci. 22 , 427–509 (1996) [CrossRef] [Google Scholar]
  20. N. Peters, Turbulent combustion, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge (2000) [CrossRef] [Google Scholar]
  21. W. Mingyue, L. Bin, L. Yiqin, W. Shibo, Q. Shan, Z. Aimin, Numerical simulation of oxy-coal combustion in a rotary cement kiln, Appl. Therm. Eng. 103 , 491–500 (2016) [Google Scholar]
  22. Z. Han, R.D. Reitz, Turbulence modelling of internal combustion engines using RNG κ−ε models, Combust. Sci. Technol. 106 , 267–295 (1995) [Google Scholar]
  23. A.H. Kadar, Modelling turbulent non-premixed combustion in industrial furnaces, PhD Thesis, Delft University of Technology, Melweg, Netherlands, 2015 [Google Scholar]
  24. E. Mastorakos, A. Massias, C.D. Tsakiroglou, D.A. Goussis, V.N. Burganos, A.C. Payatakes, CFD predictions for cement kilns including flame modelling, heat transfer and clinker chemistry, Appl. Math. Model. 23 , 55–76 (1999) [Google Scholar]
  25. K.S. Mujumdar, V.V. Ranade, Simulation of rotary cement kilns using a one-dimensional model, Chem. Eng. Res. Des. 84 , 165–177 (2006) [Google Scholar]
  26. G.S. Lewis, B.J. Cantwell, U. Vandsburger, C.T. Bowman, An investigation of structure of a laminar Non-premixed flame in an unsteady vortical flow, Int. Symp. Combust, 515–522, (1988) [Google Scholar]
  27. A. Issakhov, R. Bulgakov, Y. Zhandaulet, Numerical simulation of the dynamics of particle motion with different sizes, Eng. Appl. Comput. Fluid Mech. 13 , 1–25 (2019) [Google Scholar]
  28. R. Prud'homme, Flows of reactive fluids − FMIA Series Vol. 94, Springer, New York Dordrecht, Heidelberg London, 2010 [CrossRef] [Google Scholar]
  29. Th. Poinsot, D. Veynante, Theoretical and numerical combustion, 2001 R.T. Edwards Ed., Philadelphia, 2001 [Google Scholar]
  30. F.A. Williams, The Fundamental Theory of Chemically Reacting Flow Systems, Second Edition, Benjamin/Cummings Publishing Company, Inc., Menlo Park, 1985 [Google Scholar]
  31. R.M.A. Masood, C. Rauh, A. Delgado, CFD simulation of bubble column flows: An explicit algebraic Reynolds stress model approach, Int. J. Multiphase Flow 66 , 11–25 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.