Open Access
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 413
Number of page(s) 12
Published online 25 June 2020
  1. N.M.M. Maia, J.M.M. Silva, Theoretical and Experimental Modal Analysis, Engineering Dynamics Series, Research Studies Press, Boston, 1997 [Google Scholar]
  2. D.J. Ewins, Modal Testing: Theory, Practice, and Application, Mechanical Engineering Research Studies: Engineering Dynamics Series, Research Studies Press, Boston, 2000 [Google Scholar]
  3. G. Bissinger, D. Oliver, 3-D laser vibrometry on legendary old Italian violins, Sound Vib. 41, 10–15 (2007) [Google Scholar]
  4. H. Marschner, Fritz Rischbieter, Three-Dimensional Operational Deflection Shape Analysis of Squealing Disc Brakes, in SAE Technical Paper, SAE International, October 2004. [Google Scholar]
  5. G. Kerschen, M. Peeters, J.C. Golinval, C. Stéphan, Nonlinear modal analysis of a full-scale aircraft, J. Aircraft 50, 1409–1419 (2013) [CrossRef] [Google Scholar]
  6. E. Blayo, M. Bocquet, J. Vernon, L’assimilation de données, un outil de synthèse de l’information, June 9 [Google Scholar]
  7. R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. 82, 82–35 (1960) [Google Scholar]
  8. R.E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mex. 5, 5–102 (1960) [Google Scholar]
  9. G.L. Smith, S.F. Schmidt, L.A. McGee, Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. Technical Report R-135, National Aeronautics and Space Administration, 1962 [Google Scholar]
  10. Analytic Sciences Corporation and A. Gelb, Applied Optimal Estimation, M.I.T. Press, Cambridge, MA, 1974 [Google Scholar]
  11. G.M. Siouris, G. Chen, J. Wang, Tracking an incoming ballistic missile using an extended interval Kalman filter, IEEE Trans. Aerosp. Electron. Syst. 33, 33–232 (1997) [Google Scholar]
  12. G.P. Huang, A.I. Mourikis, S.I. Roumeliotis, Analysis and improvement of the consistency of extended Kalman filter based SLAM, in IEEE International Conferenc on Robotics and Automation, 2008, pp. 473–479 [Google Scholar]
  13. S.E. Azam, E. Chatzi, C. Papadimitriou, A. Smyth, Experimental validation of the Kalman-type filters for online and real-time state and input estimation. J. Vib. Control 23, 2494–2519 (2015) [Google Scholar]
  14. C.-K. Ma, D.-C. Lin, J.-M. Chang, Estimation of forces generated by a machine mounted upon isolators under operating conditions. J. Franklin Inst. 336, 875–892 (1999) [Google Scholar]
  15. C.-K. Ma, C.-C. Ho, An inverse method for the estimation of input forces acting on non-linear structural systems. J. Sound Vib. 275, 953–971 (2004) [Google Scholar]
  16. P.J. Kootsookos, A review of the frequency estimation and tracking problems, 1993 [Google Scholar]
  17. J. Antoni, L. Garibaldi, S. Marchesiello, M. Sidhamed, New separation techniques for output-only modal analysis. Shock Vib. 11, 227–242 (2004) [CrossRef] [Google Scholar]
  18. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, Wiley-Interscience, New York, 2006 [CrossRef] [Google Scholar]
  19. Y. Shao, C.K. Mechefske, Gearbox vibration monitoring using extended Kalman filters and hypothesis tests, J. Sound Vib. 325, 325–629 (2009) [Google Scholar]
  20. D.A. Ehrhardt, M.S. Allen, Measurement of nonlinear normal modes using multi-harmonic stepped force appropriation and free decay. Mech. Syst. Signal Process. 76-77, 612–633 (2016) [Google Scholar]
  21. Y. Yang, C. Dorn, T. Mancini, Z. Talken, G. Kenyon, C. Farrar, D. Mascareñas, Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification, Mech. Syst. Signal Process. 85, 85–567 (2017) [Google Scholar]
  22. M. Abdollahpouri, G. Takács, B. Rohaľ-Ilkiv, Real-time moving horizon estimation for a vibrating active cantilever, Mech. Syst. Signal Process. 86, 86–1 (2017) [Google Scholar]
  23. Z. Dzunic, J.G. Chen, H. Mobahi, O. Büyüköztürk, J.W. Fisher, A Bayesian state-space approach for damage detection and classification. Mech. Syst. Signal Process. 96, 239–259 (2017) [Google Scholar]
  24. F. Naets, F. Cosco, W. Desmet, An extended Kalman filter approach for augmented strain/stress visualization in mechanical systems, in 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), September 2014 pp. 1–6 [Google Scholar]
  25. J.-L. Dion, C. Stephan, G. Chevallier, H. Festjens, Tracking and removing modulated sinusoidal components: A solution based on the kurtosis and the Extended Kalman Filter, Mech. Syst. Signal Process. 38, 38–428 (2013) [Google Scholar]
  26. Y.-J. Cha, J.G. Chen, O. Büyüköztürk, Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Eng. Struct. 132, 300–313 (2017) [Google Scholar]
  27. V. Ondra, I.A. Sever, C.W. Schwingshackl, A method for detection and characterisation of structural non-linearities using the Hilbert transform and neural networks, Mech. Syst. Signal Process. 83, 83–210 (2017) [Google Scholar]
  28. A. Goeller, J.L. Dion, R.L. Breton, T. Soriano, B. Roux, Dynamic system stochastic identification mixed with video processing: Validation on a real case, in Mechatronics (MECATRONICS)/11th France-Japan & 9th Europe-Asia Congress & 17th International Conference on Research and Education in Mechatronics (REM), 2016, pp. 146–151 [Google Scholar]
  29. M. Bocquet, Introduction to the principles and methods of data assimilation in geosciences, Technical report, École des Ponts ParisTech, February 2014 [Google Scholar]
  30. N. Peyret, J.-L. Dion, G. Chevallier, A framework for backbone experimental tracking: Piezoelectric actuators, stop-sine signal and Kalman filtering. Mech. Syst. Signal Process. 78, 28–42 (2016) [Google Scholar]
  31. E. Bedrosian, A product theorem for Hilbert transforms, Proc. IEEE 51, 51–868 (1963) [CrossRef] [Google Scholar]
  32. C. Pachaud, T. Gerber, M. Firla, N. Martin, C. Mailhes, Consequences of non-respect of the Bedrosian theorem when demodulating, in The Tenth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies (CM2013), 2013 [Google Scholar]
  33. M.R. Shahriar, P. Borghesani, R.B. Randall, A.C.C. Tan, An assessment of envelope-based demodulation in case of proximity of carrier and modulation frequencies, Mech. Syst. Signal Process. 96, 96–176 (2017) [Google Scholar]
  34. A. Goeller, Contribution à La Perception Augmentée de Scènes Dynamiques : Schémas Temps Réels d’assimilation de Données Pour La Mécanique Du Solide et Des Structures. PhD thesis, 2018 [Google Scholar]
  35. Z. Zhang, A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 22–1330 (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.