Open Access
Issue
Mechanics & Industry
Volume 21, Number 5, 2020
Article Number 521
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2020066
Published online 17 August 2020
  1. Y. Shokoohi, E. Khosrojerdi, E. Shekarian, The effects of concentration of cutting fluids on machining performance during end milling of steel St60, Mech. Ind. 17 , 407 (2016) [CrossRef] [Google Scholar]
  2. P. Sreejith, Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions, Mater. Lett. 62 , 276–278 (2008) [Google Scholar]
  3. K. Wickramasinghe, G. Perera, H. Herath, Formulation and performance evaluation of a novel coconut oil-based metalworking fluid, Mater Manuf. Process. 1–8 (2017) [Google Scholar]
  4. A. Birova, A. Pavlovicova, J. Cvenros, Lubricating oils based on chemically modified vegetable oils, J. Synth. Lubr. 18 , 291–299 (2002) [CrossRef] [Google Scholar]
  5. S. Lawal, I. Choudhury, Y. Nukman, Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review, Int. J. Mach. Tools Manu. 52 , 1–12 (2012) [CrossRef] [Google Scholar]
  6. Y. Shashidhara, S. Jayaram, Vegetable oils as a potential cutting fluid—an evolution, Tribol. Int. 43 , 1073–1081 (2010) [Google Scholar]
  7. H. Abdalla, W. Baines, G. McIntyre, C. Slade, Development of novel sustainable neat-oil metal working fluids for stainless steel and titanium alloy machining. Part 1. Formulation development, Int. J. Adv. Manuf. Technol. 34 , 21–33 (2007) [Google Scholar]
  8. A. Raj, K.L.D. Wins, M.D. Anand, A. Varadarajan, Performance evaluation of vegetable oil based cutting fluid during hard turning of AISI 4340 steel with minimal cutting fluid application, Indian J. Sci. Technol. 9 (2016) [Google Scholar]
  9. A. Das, S.K. Patel, S.R. Das, Performance comparison of vegetable oil based nanofluids towards machinability improvement in hard turning of HSLA steel using minimum quantity lubrication, Mech. Ind. 20 , 506 (2019) [CrossRef] [Google Scholar]
  10. R. Padmini, P.V. Krishna, G.K.M. Rao, Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel, Tribol. Int. 94 , 490–501 (2016) [Google Scholar]
  11. S. Zhang, J. Li, Y. Wang, Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions, J. Clean. Prod. 32 , 81–87 (2012) [Google Scholar]
  12. S. Debnath, M.M. Reddy, Q.S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: a review, J. Clean. Prod. 83 , 33–47 (2014) [Google Scholar]
  13. H.A. Elemsimit, D. Grecov, Impact of liquid crystal additives on a canola oil-based bio-lubricant, P.I. Mech. Eng., JJ. Eng. Tribol. 229 , 126–135 (2015) [Google Scholar]
  14. B.S. Kumar, G. Padmanabhan, P.V. Krishna, Performance assessment of vegetable oil based cutting fluids with extreme pressure additive in machining, J. Adv. Res. Mater. Sci. 19 , 1–13 (2016) [Google Scholar]
  15. C. Brecher, P. Chavan, A. Epple, Investigations on the limitations of rapid experimental determination of stability boundaries during milling, Mech. Ind. 18 , 608 (2017) [CrossRef] [Google Scholar]
  16. E. Kuram, B. Ozcelik, M. Bayramoglu, E. Demirbas, B.T. Simsek, Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments, J. Clean. Prod. 42 , 159–166 (2013) [Google Scholar]
  17. M. Maleque, H. Masjuki, S.M. Sapuan, Vegetable-based biodegradable lubricating oil additives, Ind. Lubr. Tribol. 55 , 137–143 (2003) [CrossRef] [Google Scholar]
  18. H.A. Elemsimit, D. Grecov, Non-Newtonian behavior in canola-oil-based bio-hydraulic oil, P.I. Mech. Eng. J J. Eng. Tribol. 230 , 257–265 (2016) [Google Scholar]
  19. S. Arumugam, G. Sriram, Synthesis and characterisation of rapeseed oil bio-lubricant–its effect on wear and frictional behaviour of piston ring–cylinder liner combination, P.I. Mech. Eng. J J. Eng. Tribol. 227 , 3–15 (2013) [Google Scholar]
  20. A. Kashyap, A. Harsha, Tribological studies on chemically modified rapeseed oil with CuO and CeO2 nanoparticles, P.I. Mech. Eng. J J. Eng. Tribol. 230 , 1562–1571 (2016) [Google Scholar]
  21. M. Sayuti, A.A. Sarhan, F. Salem, Novel uses of SiO 2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption, J. Clean. Prod. 67 , 265–276 (2014) [Google Scholar]
  22. U. Rashid, G. Knothe, R. Yunus, R.L. Evangelista, Kapok oil methyl esters, Biomass Bioenerg. 66 , 419–425 (2014) [CrossRef] [Google Scholar]
  23. A. Palanivelrajan, G. Anbarasu, Experimental investigation of performance and emission characteristics of cebia petandra biodiesel in CI engine, Inte. J. ChemTech Res. 9 , 230–238 (2016) [Google Scholar]
  24. A. Silitonga, H. Masjuki, T. Mahlia, H.C. Ong, W. Chong, Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends, Energy Convers. Manag. 76 , 828–836 (2013) [Google Scholar]
  25. S. Shankar, M. Manikandan, G. Raja, Evaluation of tribological properties of Ceiba pentandra (kapok) seed oil as an alternative lubricant, Ind. Lubr. Tribol. 70 , 506–511 (2018) [CrossRef] [Google Scholar]
  26. B. Sick, On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research, Mech. Syst. Signal Process. 16 , 487–546 (2002 [Google Scholar]
  27. N. Ghosh, Y. Ravi, A. Patra, S. Mukhopadhyay, S. Paul, A. Mohanty, A. Chattopadhyay, Estimation of tool wear during CNC milling using neural network-based sensor fusion, Mech. Syst. Signal Process. 21 , 466–479 (2007) [Google Scholar]
  28. R. Dutta, G. Kiran, S. Paul, A. Chattopadhyay, Assessment of machining features for tool condition monitoring in face milling using an artificial neural network, P. I. Mech. Eng. B J. Eng. Manuf. 214 , 535–546 (2000) [CrossRef] [Google Scholar]
  29. R. Dutta, S. Paul, A. Chattopadhyay, Fuzzy controlled backpropagation neural network for tool condition monitoring in face milling, Int. J. Prod. Res. 38 , 2989–3010 (2000) [Google Scholar]
  30. R. Teimouri, S. Amini, N. Mohagheghian, Experimental study and empirical analysis on effect of ultrasonic vibration during rotary turning of aluminum 7075 aerospace alloy, J. Manuf. Process. 26 , 1–12 (2017) [Google Scholar]
  31. S. Shankar, T. Mohanraj, Tool condition monitoring in milling using sensor fusion technique, Proceedings of Malaysian International Tribology Conference 2015. Malaysian Tribology Society, 2015 pp. 322–323 [Google Scholar]
  32. M. Lotfi, S. Amini, R. Teimouri, M. Alinaghian, Built-up edge reduction in drilling of AISI 1045 steel, Mater. Manuf. Process. 32 , 623–630 (2017). [CrossRef] [Google Scholar]
  33. S. Shankar, T. Mohanraj, R. Rajasekar, Prediction of cutting tool wear during milling process using artificial intelligence techniques, Int. J. Comput. Integr. Manuf. 32 , 174–182 (2019) [Google Scholar]
  34. E. Kuram, B. Ozcelik, E. Demirbas, E. Sik, I.N. Tansel, Evaluation of new vegetable-based cutting fluids on thrust force and surface roughness in drilling of AISI 304 using Taguchi method, Mater. Manuf. Process. 26 , 1136–1146 (2011) [CrossRef] [Google Scholar]
  35. W. Zhong, D. Zhao, X. Wang, A comparative study on dry milling and little quantity lubricant milling based on vibration signals, Int. J. Mach. Tools Manuf. 50 , 1057–1064 (2010) [Google Scholar]
  36. Z. Tekiner, S. Yesilyurt, Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel, Mater. Des. 25 , 507–513 (2004) [Google Scholar]
  37. J. Kopac, S. Sali, Tool wear monitoring during the turning process, J. Mater. Process. Technol. 113 , 312–316 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.