Mechanics & Industry
Volume 21, Number 5, 2020
Scientific challenges and industrial applications in mechanical engineering
Article Number 513
Number of page(s) 12
Published online 11 August 2020
  1. D. Kandel, E. Domany, Rigorous derivation of domain growth kinetics without conservation laws, J. Stat. Phys. 58, 685–706 (1990) [Google Scholar]
  2. E.A. Holm, G.N. Hassold, M.A. Miodownik, On misorientation distribution evolution during anisotropic grain growth, Acta Mater. 49, 2981–2991 (2001) [Google Scholar]
  3. E.A. Holm, M.A. Miodownik, A.D. Rollett, On abnormal subgrain growth and the origin of recrystallization nuclei, Acta Mater. 51, 2701–2716 (2003) [Google Scholar]
  4. L. Zhang, A.D. Rollett, T. Bartel, D. Wu, M.T. Lusk, A calibrated monte carlo approach to quantify the impacts of misorientation and different driving forces on texture development, Acta Mater. 60, 1201–1210 (2012) [Google Scholar]
  5. J. Gruber, D.C. George, A.P. Kuprat, G.S. Rohrer, A.D. Rollett, Effect of anisotropic grain boundary properties on grain boundary plane distributions during grain growth. Scr. Mater. 53, 351–355 (2005) [Google Scholar]
  6. H. Hallberg, Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth-a 2d level set study, Model. Simul. Mater. Sci. Eng. 22, 085005 (2014) [CrossRef] [Google Scholar]
  7. B. Scholtes, R. Boulais-Sinou, A. Settefrati, D.P. Muñoz, I. Poitrault, A. Montouchet, N. Bozzolo, M. Bernacki, 3d level set modeling of static recrystallization considering stored energy fields. Comput. Mater. Sci. 122, 57–71 (2016) [Google Scholar]
  8. N. Ma, A. Kazaryan, S.A. Dregia, Y. Wang, Computer simulation of texture evolution during grain growth: effect of boundary properties and initial microstructure, Acta Mater. 52, 3869–3879 (2004) [Google Scholar]
  9. C.E. Krill Iii, L.-Q. Chen, Computer simulation of 3-d grain growth using a phase-field model, Acta Mater. 50, 3059–3075 (2002) [Google Scholar]
  10. L. Vanherpe, N. Moelans, B. Blanpain, S. Vandewalle, Bounding box framework for efficient phase field simulation of graingrowth in anisotropic systems, Comput. Mater. Sci. 50, 2221–2231 (2011) [Google Scholar]
  11. K. Chang, N. Moelans, Effect of grain boundary energy anisotropy on highly textured grain structures studied by phase-field simulations, Acta Mater. 64, 443–454 (2014) [Google Scholar]
  12. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Misorientation dependence of intrinsic grain boundary mobility: simulation and experiment, Acta Mater. 47, 3901–3914 (1999) [Google Scholar]
  13. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Molecular dynamics simulation of triple junction migration, Acta Mater. 50, 1405–1420 (2002) [Google Scholar]
  14. M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky, J.A. Warren, W.C. Carter, Simultaneous grain boundary migration and grain rotation, Acta Mater. 54, 1707–1719 (2006) [Google Scholar]
  15. F.J. Humphreys, Modelling mechanisms and microstructures of recrystallisation, Mater. Sci. Technol. 8, 135–144 (1992) [CrossRef] [Google Scholar]
  16. F. Wakai, N. Enomoto, H. Ogawa, Three-dimensional microstructural evolution in ideal grain growth-general statistics, Acta Mater. 48, 1297–1311 (2000) [Google Scholar]
  17. M. Syha, D. Weygand, A generalized vertex dynamics model for grain growth in three dimensions, Model. Simul. Mater. Sci. Eng. 18, 015010 (2009) [CrossRef] [Google Scholar]
  18. A. Vondrous, M. Reichardt, B. Nestler. Growth rate distributions for regular two-dimensional grains with read–shockley grain boundary energy, Model. Simul. Mater. Sci. Eng. 22, 025014 (2014) [CrossRef] [Google Scholar]
  19. W.T. Read, W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev. 78, 275 (1950) [Google Scholar]
  20. D. Wolf, A read-shockley model for high-angle grain boundaries, Scr. Metal. 23, 1713–1718 (1989) [CrossRef] [Google Scholar]
  21. V.V. Bulatov, B.W. Reed, M. Kumar, Grain boundary energy function for fcc metals, Acta Mater. 65, 161–175 (2014) [Google Scholar]
  22. A. Kagawa, T. Okamoto, H. Matsumoto, Young’s modulus and thermal expansion of pure iron-cementite alloy castings, Acta Metal. 35, 797–803 (1987) [CrossRef] [Google Scholar]
  23. T. Cheng, D. Fang, Y. Yang, The temperature dependence of grain boundary free energy of solids, J. Appl. Phys. 123, 085902 (2018) [Google Scholar]
  24. M. Brocato, A. Ehrlacher, P. Tamagny, Détermination de la dissipation caractéristique dans la propagation d’un front de recristallisation, C.R. Acad. Sci. Ser. IIB Mech. Phys. Astron. 327, 179–184 (1999) [Google Scholar]
  25. M. Brocato, A. Ehrlacher, P. Tamagny, Stability of discontinuities in polycrystals, Waves and Stability in Continuous Media, World Scientific, Singapore, 1999, p. 57 [Google Scholar]
  26. K. Hackl, F.D. Fischer, On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. R. Soc. A 464, 117–132 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  27. Scilab. Scilab: Free and open source software for numerical computation, Scilab Enterprises, Orsay, France, 2012 [Google Scholar]
  28. C.W. Sinclair, C.R. Hutchinson, Y. Brechet, The effect of nb on the recrystallization and grain growth of ultra-high-purity α-fe: a combinatorial approach, Metal. Mater. Trans. A 38, 821–830 (2007) [CrossRef] [Google Scholar]
  29. R. Quey, P.R. Dawson, F. Barbe, Large-scale 3d random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011) [Google Scholar]
  30. C. Kerisit, R.E. Logé, S. Jacomet, V. Llorca, N. Bozzolo, Ebsd coupled to sem in situ annealing for assessing recrystallization and grain growth mechanisms in pure tantalum, J. Microsc. 250, 189–199 (2013) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.