Issue
Mechanics & Industry
Volume 21, Number 5, 2020
Scientific challenges and industrial applications in mechanical engineering
Article Number 516
Number of page(s) 6
DOI https://doi.org/10.1051/meca/2020048
Published online 13 August 2020
  1. I. Zuriguel, A. Janda, A. Garcimartin, C. Lozano, R. Arevalo, D. Maza, Silo clogging reduction by the presence of an obstacle, Phys. Rev. Lett. 107, 278001 (2011) [CrossRef] [PubMed] [Google Scholar]
  2. C. Lozano, A. Janda, A. Garcimartin, D. Maza, I. Zuriguel, Flow and clogging in a silo with an obstacle above the orifice, Phys. Rev. E 86, 031306 (2012) [Google Scholar]
  3. F. Alonso-Marroquin, S.I. Azeezullah, S.A. Galindo-Torres, L.M. Olsen-Kettle, Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass? Phys. Rev. E 85, 020301(R) (2012) [Google Scholar]
  4. J.R. Johanson, The use of flow corrective inserts in bins, J. Eng. for Ind. 2, 224–230 (1966) [CrossRef] [Google Scholar]
  5. J.R. Johanson, The placement of inserts to correct flow in bins, Powder Technol. 1, 328–333 (1967/68) [Google Scholar]
  6. R.M. Nedderman, S.T. Davies, D.J. Horton, The flow of granular materials round obstacles, Powder Technol. 25, 215–223 (1980) [Google Scholar]
  7. U. Tüzün, R.M. Nedderman, Gravity flow of granular materials round obstacles-I: Investigation of the effects of inserts on flow patterns inside a silo, Chem. Eng. Sci 40, 325–336 (1985) [Google Scholar]
  8. S.C. Yang, S.S. Hsiau, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technol. 120, 244 (2001) [Google Scholar]
  9. C.S. Chou, T.L. Yang, The effect of a flow corrective insert upon flow patterns and wall stresses in a two-dimensional bin-hopper, Adv. Powder Technol. 15, 567 (2004) [Google Scholar]
  10. J. Härtl, J.Y. Ooi, J.M. Rotter, M. Wsjcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des. 86, 370 (2008) [Google Scholar]
  11. B.P. Tighe, M. Sperl, Pressure and motion of dry sand: translation of Hagen’s paper from 1852, Granular Mater. 9, 141–144 (2007) [CrossRef] [Google Scholar]
  12. W.A. Beverloo, H.A. Leniger, J.V. De Velde, The flow of granular solids through orifices, Chem. Eng. Sci. 15, 260–269 (1961) [Google Scholar]
  13. A. Janda, I. Zuriguel, D. Maza, Flow rate of particles through apertures obtained from self-similar density and velocityprofiles, Phys. Rev. Lett. 108, 248001 (2012) [Google Scholar]
  14. S. Rubio-Largo, A. Janda, D. Maza, I. Zuriguel, R. Hildalgo, Disentangling the free-fall arch paradox in silo discharge, Phys. Rev. Lett. 114, 238002 (2015) [CrossRef] [PubMed] [Google Scholar]
  15. M. Benyamine, M. Djermane, B. Dalloz-Dubrujeaud, P. Aussillous, Discharge flow of a bidisperse granular media from a silo, Phys. Rev. E 90, 032201 (2014) [Google Scholar]
  16. Y. Zhou, P.-Y. Lagrée, S. Popinet, P. Ruyer, P. Aussillous, Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice, J. Fluid Mech. 829, 459–485 (2017) [Google Scholar]
  17. R. Maiti, G. Das, P.K. Das, Experiments on eccentric granular discharge from a quasi-two-dimensional silo, Powder Technol. 301, 1054–1066 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.