Open Access
Issue |
Mechanics & Industry
Volume 21, Number 5, 2020
|
|
---|---|---|
Article Number | 527 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/meca/2020070 | |
Published online | 03 September 2020 |
- G. Vega, A. Haddi, A. Imad, Investigation of process parameters effect on the copper-wire drawing, Mater. Des. 30 , 3308–3312 (2009) [Google Scholar]
- A. Haddi, A. Imad, G. Vega, Analysis of temperature and speed effects on the drawing stress for improving the wire drawing process, Mater. Des. 32 , 4310–4315 (2011) [Google Scholar]
- C. Luis, J. Leon, R. Luri, Comparison between finite element method and analytical methods for studying wire drawing processes, J. Mater. Process. Technol. 164 , 1218–1225 (2005) [CrossRef] [Google Scholar]
- D.J. Celentano et al., Simulation and experimental validation of multiple-step wire drawing processes, Finite Elements Anal. Des. 45 , 163–180 (2009) [CrossRef] [Google Scholar]
- S. He et al., Strain rate effect in high-speed wire drawing process, Model. Simul. Mater. Sci. Eng. 10 , 267 (2002) [CrossRef] [Google Scholar]
- A.I.H. Committee, ASM handbook: mechanical testing and evaluation, Vol. 8, ASM International, 2000 [Google Scholar]
- G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, 1983, p. 6 [Google Scholar]
- Y. Lin, X.-M. Chen, G. Liu, A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel, Mater. Sci. Eng. A 527 , 6980–6986 (2010) [CrossRef] [Google Scholar]
- G. Chen et al., Modeling of flow behavior for 7050-T7451 aluminum alloy considering microstructural evolution over a wide range of strain rates, Mech. Mater. 95 , 146–157 (2016) [Google Scholar]
- Y. Lin, L.-T. Li, Y.-Q. Jiang, A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al-Zn-Mg-Cu alloy under hot working condition, Exp. Mech. 52 , 993–1002 (2012) [Google Scholar]
- J.Q. Tan et al., A modified Johnson–Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates, Mater. Sci. Eng. A 631 , 214–219 (2015) [CrossRef] [Google Scholar]
- M. Vural, J. Caro, Experimental analysis and constitutive modeling for the newly developed 2139-T8 alloy, Mater. Sci. Eng. A 520 , 56–65 (2009) [CrossRef] [Google Scholar]
- H. Shin, J.-B. Kim, A phenomenological constitutive equation to describe various flow stress behaviors of materials in wide strain rate and temperature regimes. J. Eng. Mater. Technol. 132 , 021009 (2010) [Google Scholar]
- W. Kang et al., Modified Johnson-Cook model for vehicle body crashworthiness simulation, Int. J. Veh. Des. 21 , 424–435 (1999) [CrossRef] [Google Scholar]
- A.H. Clausen et al., Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality, Mater. Sci. Eng.: A. 364 , 260–272 (2004) [CrossRef] [Google Scholar]
- H.-Y. Li et al., A comparative study on modified Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel, Mater. Des. 49 , 493–501 (2013) [Google Scholar]
- D.-N. Zhang et al., A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy, J. Alloys Compd. 619 , 186–194 (2015) [Google Scholar]
- G. Majzoobi et al., Determination of materials parameters under dynamic loading. Part I: Experiments and simulations, Comput. Mater. Sci. 49 , 192–200 (2010) [Google Scholar]
- T. Iwamoto, T. Yokoyama, Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: a computational study, Mech. Mater. 51 , 97–109 (2012) [Google Scholar]
- A. Bhaduri, Mechanical Properties and Working of Metals and Alloys. Vol. 264, Springer, 2018 [CrossRef] [Google Scholar]
- G.-H. Majzoobi et al., Determination of the constants of material models at high strain rates and elevated temperatures using shot impact test, J. Strain Anal. Eng. Des. 49 , 342–351 (2014) [Google Scholar]
- J. Ning, S.Y. Liang, Model-driven determination of Johnson-Cook material constants using temperature and force measurements, Int. J. Adv. Manuf. Technol. 97 , 1053–1060 (2018) [Google Scholar]
- J. Ning et al., Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search, Int. J. Adv. Manuf. Technol. 99 , 1131–1140 (2018) [Google Scholar]
- M. Agmell, A. Ahadi, J.-E. Ståhl, Identification of plasticity constants from orthogonal cutting and inverse analysis, Mech. Mater. 77 , 43–51 (2014) [Google Scholar]
- S.V. Laakso, E. Niemi, Using FEM simulations of cutting for evaluating the performance of different johnson cook parameter sets acquired with inverse methods, Rob. Comput. Integr. Manuf. 47 , 95–101 (2017) [CrossRef] [Google Scholar]
- M. Grujicic et al., Modifications in the AA5083 Johnson-Cook material model for use in friction stir welding computational analyses, J. Mater. Eng. Perform. 21 , 2207–2217 (2012) [Google Scholar]
- T.G. Faurholdt, Inverse modelling of constitutive parameters for elastoplastic problems, J. Strain Anal. Eng. Des. 35 , 471–478 (2000) [Google Scholar]
- D. Szeliga, J. Gawad, M. Pietrzyk, Inverse analysis for identification of rheological and friction models in metal forming, Comput. Methods Appl. Mech. Eng. 195 , 6778–6798 (2006) [Google Scholar]
- X. Chen et al., On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials, J. Mech. Phys. Solids. 55 , 1618–1660 (2007) [Google Scholar]
- L. Meng, P. Breitkopf, G. Le Quilliec, An insight into the identifiability of material properties by instrumented indentation test using manifold approach based on Ph curve and imprint shape, Int. J. Solids Struct. 106 , 13–26 (2017) [Google Scholar]
- L. Meng et al., On the study of mystical materials identified by indentation on power law and Voce hardening solids, Int. J. Mater. Form. 12 , 587–602 (2019) [CrossRef] [Google Scholar]
- C.K. Moy et al., Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests, Mater. Sci. Eng.: A 529 , 119–130 (2011) [CrossRef] [Google Scholar]
- T. Nakamura, T. Wang, S. Sampath, Determination of properties of graded materials by inverse analysis and instrumented indentation, Acta Mater. 48 , 4293–4306 (2000) [Google Scholar]
- Y. Lin et al., Hot compressive deformation behavior of 7075 Al alloy under elevated temperature, J. Mater. Sci. 47 , 1306–1318 (2012) [Google Scholar]
- H. Assadi et al., Bonding mechanism in cold gas spraying, Acta Mater. 51 , 4379–4394 (2003) [Google Scholar]
- S. Tanimura et al., Comparison of rate-dependent constitutive models with experimental data, Int. J. Impact Eng. 69 , 10 (2014) [Google Scholar]
- H.W. Richardson, Handbook of copper compounds and applications (CRC Press, 1997) [CrossRef] [Google Scholar]
- D.W. Green, PERRY'S CHEMICAL ENGINEER'S HANDBOOK 8/E SECTION 25 MATERIALS OF CONSTRCTN (POD) (McGraw-Hill Education, 2007) [Google Scholar]
- R.N. Wright, Wire Drawing Technology: Process Engineering and Metallurgy (Elsevier Inc., USA, 2011) [Google Scholar]
- W. Evans, B. Avitzur, Measurement of friction in drawing, extrusion, and rolling, 1968 [Google Scholar]
- B. Avitzur, Analysis of wire drawing and extrusion through conical dies of small cone angle, 1963 [Google Scholar]
- A. Kurlov, A. Gusev, Tungsten Carbides: Structure, Properties and Application in Hardmetals (Springer, Cham-Heidelberg-NY, 2013) [Google Scholar]
- R. Smerd et al., High strain rate tensile testing of automotive aluminum alloy sheet, Int. J. Impact Eng. 32 , 541–560 (2005) [Google Scholar]
- A.S. Khan, H. Liu, Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling, Int. J. Plast. 36 , 1–14 (2012) [Google Scholar]
- H. Cho, Development of Advanced Techniques for Identification of Flow Stress and Friction Parameters for Metal Forming Analysis, in Graduate School (Ohio State University, Ohio, 2007), p. 218 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.