Open Access
Mechanics & Industry
Volume 21, Number 5, 2020
Article Number 529
Number of page(s) 13
Published online 18 September 2020
  1. [Google Scholar]
  2. A. Barimani-Varandi, The non-isothermal hot deep drawing of AA5083 aluminum alloy, Mech. Ind. 21 , 112 (2020) [CrossRef] [Google Scholar]
  3. A. Al-Mukhtar, Review of resistance spot welding sheets: processes and failure mode, Adv. Eng. Forum. Trans Tech Publ. 31–57 (2016) [CrossRef] [Google Scholar]
  4. P.-C. Lin, S.-M. Lo, S.-P. Wu, Fatigue life estimations of alclad AA2024-T3 friction stir clinch joints, Int. J. Fatigue 107 , 13–26 (2018) [Google Scholar]
  5. Z. Shen, X. Yang, Z. Zhang, L. Cui, T. Li, Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints, Mater. Des. 44 , 476–486 (2013) [Google Scholar]
  6. Y. Zhao, H. Liu, Z. Lin, S. Chen, J. Hou, Microstructures and mechanical properties of friction spot welded Alclad 7B04-T74 aluminium alloy, Sci. Technol. Weld. Joining 19 , 617–622 (2014) [CrossRef] [Google Scholar]
  7. J. Aoh, P. Lin, Process development of FSW/FSSW on complex curvilinear surface components. AIDC Technical Report, 2009 [Google Scholar]
  8. R.W. Manufacturers' Alliance, Resistance welding manual (American Welding Society, Miami, Florida, 2003) [Google Scholar]
  9. D. Li, A. Chrysanthou, I. Patel, G. Williams, Self-piercing riveting − a review, Int. J. Adv. Manufactur. Technol. 92 , 1777–1824 (2017) [CrossRef] [Google Scholar]
  10. [Google Scholar]
  11. L. Thies, Blechverbindung, Deutsches Reichspatent, 1897 [Google Scholar]
  12. G. Dingfeld, Fastening engineering. 25 years of clinch technology—a process has shaped up nicely (25 Jahre Clinchtechnik—Ein Verfahren hat Sich Entwickelt), Konstruktion. 10 , 47–49 (2006) [Google Scholar]
  13. T. Balawender, T. Sadowski, M. Kneć, Technological problems and experimental investigation of hybrid: clinched-adhesively bonded joint, Arch. Metall. Mater. 56 , 438–446 (2011) [CrossRef] [Google Scholar]
  14. R. Banham, The Ford century: Ford Motor Company and the innovations that shaped the world, Artisan Books, 2002 [Google Scholar]
  15. B. Awiszus, U. Beyer, F. Riedel, M. Todtermuschke, Simulation based development of a clinch connection with plane surface of die side, Adv. Technol. Plactisity 584–585 (2008) [Google Scholar]
  16. J. Kim, C. Lee, S. Lee, D. Ko, B. Kim, Effect of shape parameters of tool on improvement of joining strength in clinching, Trans. Mater. Process. 18 , 392–400 (2009) [CrossRef] [Google Scholar]
  17. J. Mucha, The analysis of lock forming mechanism in the clinching joint, Mater. Des. 32 , 4943–4954 (2011) [Google Scholar]
  18. Y. Abe, K. Mori, T. Kato, Joining of high strength steel and aluminium alloy sheets by mechanical clinching with dies for control of metal flow, J. Mater. Process. Technol. 212 , 884–889 (2012) [CrossRef] [Google Scholar]
  19. Y. Abe, S. Nihsino, K.-i. Mori, T. Saito, Improvement of joinability in mechanical clinching of ultra-high strength steel sheets using counter pressure with ring rubber, Proc. Eng. 81 , 2056–2061 (2014) [CrossRef] [Google Scholar]
  20. F. Lambiase, Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions, J. Mater. Process. Technol. 225 , 421–432 (2015) [CrossRef] [Google Scholar]
  21. M.K.S. Atia, M.K. Jain, Die-less clinching process and joint strength of AA7075 aluminum joints, Thin-Walled Struct. 120 , 421–431 (2017) [CrossRef] [Google Scholar]
  22. M.-h. Wang, G.-q. Xiao, Z. Li, J.-q. Wang, Shape optimization methodology of clinching tools based on Bezier curve, Int. J. Adv. Manufactur. Technol. 94 , 2267–2280 (2018) [CrossRef] [Google Scholar]
  23. C.-J. Lee, J.-Y. Kim, S.-K. Lee, D.-C. Ko, B.-M. Kim, Design of mechanical clinching tools for joining of aluminium alloy sheets, Mater. Des. 31 , 1854–1861 (2010) [Google Scholar]
  24. J.P. Varis, A novel procedure for establishing clinching parameters for high-strength steel sheet (2003) [Google Scholar]
  25. J. Varis, Ensuring the integrity in clinching process, J. Mater. Process. Technol. 174 , 277–285 (2006) [CrossRef] [Google Scholar]
  26. L. Lei, X. He, T. Yu, B. Xing, Failure modes of mechanical clinching in metal sheet materials, Thin-Walled Struct. 144 , 106281 (2019) [CrossRef] [Google Scholar]
  27. Y. Zhang, H. Shan, Y. Li, J. Guo, Z. Luo, C.Y. Ma, Joining aluminum alloy 5052 sheets via novel hybrid resistance spot clinching process, Mater. Des. 118 , 36–43 (2017) [Google Scholar]
  28. L.-W. Chen, M.-J. Cai, Development of a hot stamping clinching tool, J. Manufactur. Process. 34 , 650–658 (2018) [CrossRef] [Google Scholar]
  29. O. Hahn, Y. Tan, M. Schroeder, M. Horstmann, Thermally supported mechanical joining of magnesium components, Materials Science Forum. Trans Tech Publ, 2005, pp. 365–370 [Google Scholar]
  30. F. Lambiase, A. Di Ilio, A. Paoletti, Joining aluminium alloys with reduced ductility by mechanical clinching, Int. J. Adv. Manufactur. Technol. 77 , 1295–1304 (2015) [CrossRef] [Google Scholar]
  31. Y. Zhang, X. He, K. Zeng, L. Lei, F. Gu, A. Ball, Influence of heat treatment on mechanical properties of clinched joints in titanium alloy sheets, Int. J. Adv Manufactur. Technol. 91 , 3349–3361 (2017) [CrossRef] [Google Scholar]
  32. M. Reich, J. Osten, B. Milkereit, J. Kalich, U. Füssel, O. Kessler, Short-time heat treatment of press hardened steel for laser assisted clinching, Mater. Sci. Technol. 30 , 1287–1296 (2014) [CrossRef] [Google Scholar]
  33. P.-C. Lin, S. Lo, Development of friction stir clinching process for alclad 2024-T3 aluminum sheets, SAE Int. J. Mater. Manufactur. 9 , 756–763 (2016) [CrossRef] [Google Scholar]
  34. J.T. Carter, Method of Friction-Assisted Clinching. Google Patents, 2010 [Google Scholar]
  35. H.-D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H.N. Han, J. Cao, S.-H. Ahn, D.-M. Chun, A review of electrically-assisted manufacturing, Int. J. Precis. Eng. Manufactur. Green Technol. 2 , 365–376 (2015) [CrossRef] [Google Scholar]
  36. W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, J.T. Roth, Electrically assisted forming: Modeling and control, Springer, 2014 [Google Scholar]
  37. A. Barimani-Varandi, S.J. Hosseinipour, Numerical and experimental study on the effect of forming speed in gradient warm deep drawing process, J. Solid Fluid Mech. 8 , 51–66 (2018) [Google Scholar]
  38. A. Barimani-Varandi, S. Jamal Hosseinipour, Investigation of process parameters in production of cylindrical parts by gradient warm deep drawing, Modares Mech. Eng. 14 (2015) [Google Scholar]
  39. X. Han, S. Zhao, C. Liu, C. Chen, F. Xu, Optimization of geometrical design of clinching tools in clinching process with extensible dies, Proc. Inst. Mech. Eng. C 231 , 3889–3897 (2017) [CrossRef] [Google Scholar]
  40. C.-J. Lee, J.-Y. Kim, S.-K. Lee, D.-C. Ko, B.-M. Kim, Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets, J. Mech. Sci. Technol. 24 , 123–126 (2010) [CrossRef] [Google Scholar]
  41. Y. Zhou, F. Lan, J. Chen, Influence of tooling geometric parameters on clinching joint properties for steel-aluminum hybrid car-body structures, 2010 3rd International Conference on Computer Science and Information Technology, 2010 [Google Scholar]
  42. S. Coppieters, P. Lava, R. Van Hecke, S. Cooreman, H. Sol, P. Van Houtte, D. Debruyne, Numerical and experimental study of the multi-axial quasi-static strength of clinched connections, Int. J. Mater. Form. 6 , 437–451 (2013) [CrossRef] [Google Scholar]
  43. F. Lambiase, A. Di Ilio, Joining Aluminum with Titanium alloy sheets by mechanical clinching, J. Manufactur. Process. 35 , 457–465 (2018) [CrossRef] [Google Scholar]
  44. T. Kobayashi, Y. Mihara, Numerical simulation of nugget formation in spot welding, SIMULIA Community Conference, 2014 [Google Scholar]
  45. F. Lambiase, A. Di Ilio, Damage analysis in mechanical clinching: Experimental and numerical study, J. Mater. Process. Technol. 230 , 109–120 (2016) [CrossRef] [Google Scholar]
  46. S. Coppieters, H. Zhang, F. Xu, N. Vandermeiren, A. Breda, D. Debruyne, Process-induced bottom defects in clinch forming: Simulation and effect on the structural integrity of single shear lap specimens, Mater. Des. 130 , 336–348 (2017) [Google Scholar]
  47. B. Xing, X. He, Y. Wang, H. Yang, C. Deng, Study of mechanical properties for copper alloy H62 sheets joined by self-piercing riveting and clinching, J. Mater. Process. Technol. 216 , 28–36 (2015) [CrossRef] [Google Scholar]
  48. Z.-M. Su, P.-C. Lin, W.-J. Lai, J. Pan, Fatigue analyses of self-piercing rivets and clinch joints in lap-shear specimens of aluminum sheets, Int. J. Fatigue 72 , 53–65 (2015) [Google Scholar]
  49. L. Kaščák, E. Spišák, Clinching as a non-standard method for joining materials of dissimilar properties, Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika 31–41 (2012) [Google Scholar]
  50. K. Mori, Y. Abe, T. Kato, Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting, J. Mater. Process. Technol. 212 , 1900–1905 (2012) [CrossRef] [Google Scholar]
  51. W.F. Hosford, R.M. Caddell, Metal forming: mechanics and metallurgy, Cambridge University Press, 2011 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.