Open Access
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 601
Number of page(s) 18
Published online 22 September 2020
  1. S. Wu, Analysis on transient thermal stresses in an annular fin, J. Therm. Stress. 20 , 591–615 (1997) [CrossRef] [Google Scholar]
  2. L.-T. Yu, C.-K. Chen, Application of the hybrid method to the transient thermal stresses response in isotropic annular fins, J. Appl. Mech. 66 , 340–346 (1999) [Google Scholar]
  3. C.H. Chiu, C.K. Chen, Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity, Acta Mech. 157 , 147–158 (2002) [Google Scholar]
  4. I.G. Aksoy, Thermal analysis of annular fins with temperature-dependent thermal properties, Appl. Math. Mech. (English Ed.) 34 , 1349–1360 (2013) [CrossRef] [Google Scholar]
  5. R. Roy, S. Ghosal, Homotopy perturbation method for the analysis of heat transfer in an annular fin with temperature-dependent thermal conductivity, J. Heat Transfer. 139 , 022001 (2016) [Google Scholar]
  6. H. Sen Peng, C.L. Chen, Hybrid differential transformation and finite difference method to annular fin with temperature-dependent thermal conductivity, Int. J. Heat Mass Transf. 54 , 2427–2433 (2011) [Google Scholar]
  7. A. Aziz, The effects of internal heat generation, anisotropy, and base temperature nonuniformity on heat transfer from a two-dimensional rectangular fin, Heat Transf. Eng. 14 , 63–70 (1993) [CrossRef] [Google Scholar]
  8. W. Lau, C.W. Tan, Errors in one-dimensional heat transfer analysis in straight and annular fins, J. Heat Transfer. 95 , 549 (2010) [Google Scholar]
  9. A. Mallick, R. Das, Application of simplex search method for predicting unknown parameters in an annular fin subjected to thermal stresses, J. Therm. Stress. 37 , 236–251 (2014) [CrossRef] [Google Scholar]
  10. M.T. Darvishi, F. Khani, A. Aziz, Numerical investigation for a hyperbolic annular fin with temperature dependent thermal conductivity, Propuls. Power Res. 5 , 55–62 (2016) [CrossRef] [Google Scholar]
  11. M. Sudheer, G.V. Shanbhag, P. Kumar, S. Somayaji, Finite element analysis of thermal characteristics of annular fins with different profiles, Eng. Appl. Sci. 7 , 750–759 (2012) [Google Scholar]
  12. A. Campo, A.M. Delgado-Torres, Approximate, analytical procedure for rectangular annular fins by accommodating the Cauchy–Euler equation, Int. J. Heat Mass Transf. 124 , 74–82 (2018) [Google Scholar]
  13. J.Y. Jang, J.T. Lai, L.C. Liu, The thermal-hydraulic characteristics of staggered circular finned-tube heat exchangers under dry and dehumidifying conditions, Int. J. Heat Mass Transf. 41 , 3321–3337 (1998) [Google Scholar]
  14. S.B.H.C. Neal, J.A. Hitchcock, A study of the heat transfer process in banks of finned tube in cross flow using a large scale model technique, in Proceeding Third Int. Heat Transf. Conf. , 1966, 290–298, available at (accessed February 26, 2019) [Google Scholar]
  15. M.S. Mon, U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transf. 47 , 1953–1964 (2004) [Google Scholar]
  16. H. Bilirgen, S. Dunbar, E.K. Levy, Numerical modeling of finned heat exchangers, Appl. Therm. Eng. 61 , 278–288 (2013) [Google Scholar]
  17. J.Y. Jang, J.Y. Yang, Experimental and 3-D numerical analysis of the thermal-hydraulic characteristics of elliptic finned-tube heat exchangers, Heat Transf. Eng. 19 , 55–67 (1998) [CrossRef] [Google Scholar]
  18. X. Hu, A.M. Jacobi, Local heat transfer behavior and its impact on a single-row, annularly finned tube heat exchanger, ASME J. Heat Transf. 115 , 66–74 (1993) [CrossRef] [Google Scholar]
  19. V.B. Kuntysh, N.N. Stenin, Heat transfer and pressure drop in cross flow through mixed inline-staggered finned tube bundles, Therm. Eng. 40 , 126–129 (1993) [Google Scholar]
  20. M. Mon, Numerical investigation of air-side heat transfer and pressure drop in circular finned-tube heat exchangers, 2003. [Google Scholar]
  21. H. Shokouhmand, S. Mahjoub, M.R. Salimpour, Constructal design of finned tubes used in air-cooled heat exchangers, J. Mech. Sci. Technol. 28 , 2385–2391 (2014) [CrossRef] [Google Scholar]
  22. H. Nemati, M. Moghimi, Numerical study of flow over annular-finned tube heat exchangers by different turbulent models, CFD Lett. 6 , 101–112 (2014) [Google Scholar]
  23. H. Nemati, S. Samivand, Numerical study of flow over annular elliptical finned tube heat exchangers, Arab. J. Sci. Eng. 41 , 4625–4634 (2016) [Google Scholar]
  24. E.N. Pis'Mennyi, Heat transfer enhancement at tubular transversely finned heating surfaces, Int. J. Heat Mass Transf. 70 , 1050–1063 (2014) [Google Scholar]
  25. V.B. Kuntysh, N.M. Kuznetsov, Thermal and aerodynamic design of air cooling finned heat exchangers, in: Saint-Petersburg, 1992 [Google Scholar]
  26. S. Wang, G. Jian, J. Xiao, J. Wen, Z. Zhang, J. Tu, Fluid-thermal-structural analysis and structural optimization of spiralwound heat exchanger, Int. Commun. Heat Mass Transf. 95 , 42–52 (2018) [CrossRef] [Google Scholar]
  27. L. Zhang, Z. Qian, J. Deng, Y. Yin, Fluid-structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger, Heat Mass Transfer. (2015) 10.1007/s00231-015-1507-5 [Google Scholar]
  28. L. Demirdzic, S. Muzaferija, Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology, Comp. Meth. Appl. Mech. Eng. 125 , 235–255 (1995) [CrossRef] [Google Scholar]
  29. I.T. Alzaharnah, MS. Hashmi, B. Yilbas, Thermal stresses in thick-walled pipes subjected to fully developed laminar flow, J. Mater. Process. Technol. 118 , 50–57 (2001) [CrossRef] [Google Scholar]
  30. M. Hosseini, A. Hatami, S. Payan, Comparison of the effect of laminar and turbulent flow regimes on thermal stresses and strains in an annular fin, J. Mech. Sci. Technol. 34 , 413–424 (2020) [CrossRef] [Google Scholar]
  31. El. Hami, Abdelkhalak, B. Radi, Fluid-structure interactions and uncertainties: ansys and fluent tools, John Wiley & Sons, 2017 [Google Scholar]
  32. Verein Deutscher Ingenieure, VDI- Wärmeübergang, Berechnungsblätter fürden Wärmeübergang, 8. Aufl. Berlin u.a., Springer, 2000 [Google Scholar]
  33. Th.E. Schmidt, Der Wärmeübergang a Rippenrohre und die Berechnung von Rohrbündel-Wärmeaustauschern, Kältetechnik, Band 15, Heft 12, (1963) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.