Open Access
Issue
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 617
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2020089
Published online 10 December 2020
  1. A. McGillivray, J. Hare, Offshore hydrocarbon releases 2001–2008 Health and Safety Laboratory (2008) [Google Scholar]
  2. S. Brown, E.V. Bravenec, From: ASM Failure Analysis Center, 2004: data from Handbook of Case Histories in Failure Analysis, Vol 1, K.A. Esakul, (Ed.), ASM International, 1992 [Google Scholar]
  3. R. Mittal, P. Singh, D. Pukazhendi, V. Bhasin, K. Vaze, A. Ghosh, Effect of vibration loading on the fatigue life of part-through notched pipe, International Journal of Pressure Vessels and Piping 88, 415–422 (2011) [CrossRef] [Google Scholar]
  4. M. Mrsnik, J. Slavic, M. Boltezar, Vibration fatigue using modal decomposition, Mechanical Systems and Signal Processing 98, 548–556 (2018) [Google Scholar]
  5. T. George, J. Seidt, M. Herman Shen, T. Nicholas, C. Cross, Development of a novel vibration-based fatigue testing methodology, International Journal of Fatigue 26, 477–486 (2004) [Google Scholar]
  6. J. Bruns, A. Zearley, T. George, O. Scott-Emuakpor, Vibration-based bending fatigue of a hybrid insert-plate, Experimental Mechanics 55, 1067–1080 (2015) [Google Scholar]
  7. J. Schijve, Four lectures on fatigue crack growth: I. Fatigue crack growth and fracture mechanics, Engineering Fracture Mechanics 11, 169–181 (1979) [Google Scholar]
  8. T. Straub, Experimental investigation of crack initiation in face-centered cubic materials in the high and very high cycle fatigue regime, (2016). DOI: 10.5445/KSP/1000051515 éd. [Google Scholar]
  9. P. Lorenzino, A. Navarro, The variation of resonance frequency in fatigue tests as a tool for in-situ identification of crack initiation and propagation, and for the determination of cracked areas, International Journal of Fatigue 70, 374–382 (2015) [Google Scholar]
  10. D. Shang, M. Barkey, Y. Wang, T. Lim, Effect of fatigue damage on the dynamic response frequency of spot-welded joints, International Journal of Fatigue 25, 311–316 (2003) [Google Scholar]
  11. N. Giannoccaro, A. Messina, R. Nobile, F. Panella, Fatigue damage evaluation of notched specimens through resonance and anti-resonance data, Engineering Failure Analysis 13, 340–352 (2006) [Google Scholar]
  12. R. Wang, D. Shang, L. Li, L. S., Fatigue damage model based on the natural frequency changes for spot-welded joints, International Journal of Fatigue 30, 1047–1055 (2008) [Google Scholar]
  13. O. Salawu, Detection of structural damage through changes in frequency: a review, Engineering Structures 19, 718–723 (1997) [Google Scholar]
  14. S. Creed, Assessment of large engineering structures using data collected during in-service loading, Structural assessment: the use of full and large scale testing, Butterworths, London, 1987 [Google Scholar]
  15. W. Xu, X. Yang, B. Zhong, Y. He, C. Tao, Failure criterion of titanium alloy irregular sheet specimens for vibration-based bending fatigue testing, Engineering Fracture Mechanics 195, 44–56 (2018) [Google Scholar]
  16. W. Xu, X. Yang, B. Zhong, G. Guo, L. Liu, C. Tao, Multiaxial fatigue investigation of titanium alloy annular discs by a vibration-based fatigue test, International Journal of Fatigue 95, 29–37 (2017) [Google Scholar]
  17. H. Hu, Y. Li, F. Zhao, Y. Miao, P. Xue, Q. Deng, Fatigue behavior of aluminium stiffened plate subjected to random vibration loading, Transactions of Non Ferrous Metals Society of China 24, 1331–1336 (2014) [CrossRef] [Google Scholar]
  18. A. Collet, M. Källman, Pipe vibrations, Report 2017: 351 (2017) [Google Scholar]
  19. A. Appert, C. Gautrelet, L. Khalij, Discussion on a test bench for vibratory fatigue experiments of a cantilever beam with an electrodynamic shaker, International congress Fatigue 2018 (Poitiers), MATEC Web of Conferences 165 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  20. C. Gautrelet, L. Khalij, R. Serra, Linearity investigation from a vibratory fatigue bench, Mechanics & Industry 20, 101 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  21. J. Minderhood, Improving SRTD Testing with resonance phase settings, Sound and Vibration 47, 13–15 (2013) [Google Scholar]
  22. C. Gautrelet, Développement et exploitation d'un banc vibratoire en flexion pour les essais de fatigue, PHD thesis, Université Rouen Normandie/INSA Rouen Normandie, 2019 [Google Scholar]
  23. C. Yan-Shin, C. Jien-Jong, The frequency effect on the fatigue crack growth rate of 304 stainless steel, Nuclear Engineering and Design 191, 225–230 (1999) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.