Open Access
Issue
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 607
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2020084
Published online 26 October 2020
  1. P. Collins, J.F. Lappin, E.M.A. Harkin-Jones, P.J. Martin, Effects of material properties and contact conditions in modelling of plug assisted thermoforming, Plast. Rubber Compos. 29, 349–359 (2000) [CrossRef] [Google Scholar]
  2. C.A. Bernard, J.P.M. Correia, N. Bahlouli, S. Ahzi, Numerical simulation of plug-assisted thermoforming process: application to polystyrene, Key Eng. Mater. 554-557, 1602–1610 (2013) [Google Scholar]
  3. P.J. Martina, H.L. Choo, C.P.J. O'Connor, Measurement and modelling of slip during plug-assisted thermoforming, Key Eng. Mater. 504-506, 1105–1110 (2012) [Google Scholar]
  4. S. Poller, W. Michaeli, Film temperatures determine the wall thickness of thermoformed parts, in: SPE ANTEC Conference Proceedings, Society of Plastic Engineers, Detroit, Michigan, USA, 1992, pp. 104–108 [Google Scholar]
  5. A.B. Martínez, M. Sánchez-Soto, J.I. Velasco, M.L.I. Maspoch, O.O. Santana, A. Gordillo, Impact characterization of a carbon fiber-epoxy laminate using a non-conservative model, J. Appl. Polym. Sci. 97, 2256–2263 (2005) [Google Scholar]
  6. R. McCool, P.J. Martin, The role of process parameters in determining wall thickness distribution in plug-assisted thermoforming, Polym. Eng. Sci. 50, 1923–1934 (2010) [Google Scholar]
  7. A. Aroujalian, M.O. Ngadi, J.P. Emond, Wall thickness distribution in plug-assist vacuum formed strawberry containers, Polym. Eng. Sci. 37, 178–182 (1997) [Google Scholar]
  8. M. Ghobadnam, P. Mosaddegh, M.R. Rejani, H. Amirabadi, A. Ghaei, Numerical and experimental analysis of HIPS sheets in thermoforming process, Int. J. Adv. Manuf. Technol. 76, 1079–1089 (2015) [Google Scholar]
  9. Y. Dong, R.J.T. Lin, D. Bhattacharyya, Finite element simulation on thermoforming acrylic sheets using dynamic explicit method, Polym. Polym. Compos. 14, 307–328 (2006) [Google Scholar]
  10. H. Hosseini, B.V. Berdyshev, A. Mehrabani-Zeinabad, A solution for warpage in polymeric products by plug-assisted thermoforming, Eur. Polym. J. 42, 1836–1843 (2006) [Google Scholar]
  11. R.A. Morales, M.V. Candal, O.O. Santana, A. Gordillo, R. Salazar, Effect of the thermoforming process variables on the sheet friction coefficient, Mater. Des. 53, 1097–1103 (2014) [Google Scholar]
  12. M. Mooney, A theory of large elastic deformation, J. Appl. Phys. 11, 582–592 (1940) [Google Scholar]
  13. R.S. Rivlin, Large elastic deformations of isotropic materials: parts 1-3, Philos. Trans. Roy. Soc. London A 240, 459–525 (1948) [CrossRef] [Google Scholar]
  14. E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids 41, 389–412 (1993) [Google Scholar]
  15. O.H. Yeoh, Characterization of elastic properties of carbon-black-filled rubber vulcanizates, Rubber Chem. Technol. 63, 792–805 (1990) [CrossRef] [Google Scholar]
  16. C.P.J. O'Connor, P.J. Martin, J. Sweeney, G. Menary, P. Caton-Rose, P.E. Spencer, Simulation of the plug-assisted thermoforming of polypropylene using a large strain thermally coupled constitutive model, J. Mater. Process. Technol. 213, 1588–1600 (2013) [CrossRef] [Google Scholar]
  17. T. Kittikanjanaruk, S. Patcharaphun, Computer simulation and experimental investigations of wall-thickness distribution in high impact polystyrene and amorphous polyethylene terephthalate thermoformed parts, Kasetsart J. Nat. Sci. 47, 302–309 (2013) [Google Scholar]
  18. A. Kaye, Non-Newtonian flow in incompressible fluids: part 1, 2 and 3, College of Aeronautics Note 134, Cranfield, UK, 1962 [Google Scholar]
  19. B. Bernstein, E.A. Kearsley, L.J. Zapas, A study of stress relaxation with finite strain, Trans. Soc. Rheol. 7, 391–410 (1963) [CrossRef] [Google Scholar]
  20. H. Hosseini, B.B. Vasilivich, A. Mehrabani-Zeinabad, Rheological modeling of plug-assist thermoforming, J. Appl. Polym. Sci. 101, 4148–4152 (2006) [Google Scholar]
  21. J. Wang, Y. Xu, W. Zhang, X. Ren, Modeling of amorphous glassy polymer undergoing large viscoplastic deformation: 3-points bending and gas-blow forming. Polymers 11, 654–669 (2019) [Google Scholar]
  22. G.J. Nam, H.W. Rhee, J.W. Lee, Finite element analysis of the effect of processing conditions on thermoforming, in: SPE ANTEC Conference Proceedings, Society of Plastic Engineers, Atlanta, Georgia, USA, 1998, pp. 690–695 [Google Scholar]
  23. D.M. Petty, Friction models for finite element modelling, J. Mater. Process. Technol. 45, 7–12 (1994) [CrossRef] [Google Scholar]
  24. P.J. Martin, R. McCool, C. Harter, H.L. Choo, Measurement of polymer-to-polymer contact friction in thermoforming, Polly. Eng. Sci. 52, 489–498 (2012) [CrossRef] [Google Scholar]
  25. D. Laroche, P. Collins, P. Martin, Modelling of the effect of slip in plug-assisted thermoforming, in: SPE ANTEC Conference Proceedings, Society of Plastic Engineers, Dallas, Texas, USA, 2001, pp. 810–814 [Google Scholar]
  26. C. G'Sell, J.J. Jonas, Determination of the plastic behavior of solid polymers at constant true strain rate, J. Mater. Sci. 14, 583–591 (1979) [Google Scholar]
  27. C. G'Sell, N.A. Aly-Helal, J.J. Jonas, Effect of stress triaxiality on neck propagation during the tensile stretching of solid polymers, J. Mater. Sci. 18, 1731–1742 (1983) [Google Scholar]
  28. P. Duffo, B. Monasse, J.M. Haudin, C. G'Sell, A. Dahoun, Rheology of polypropylene in the solid state, J. Mater. Sci. 30, 701–711 (1995) [Google Scholar]
  29. C. G'Sell, Instabilités de déformation pendant l'étirage des polymères solides, Revue de Physique Appliquée 23, 1085–1101 (1998) [CrossRef] [Google Scholar]
  30. G. Sala, L.D. Landro, D. Cassago, A numerical and experimental approach to optimise sheet stamping technologies: polymers thermoforming, Mater. Des. 23, 21–39 (2002) [Google Scholar]
  31. B. Abbès, O. Zaki, L. Safa, Experimental and numerical study of the aging effects of sorption conditions on the mechanical behaviour of polypropylene bottles under columnar crush conditions, Polym. Test. 29, 902–909 (2010) [Google Scholar]
  32. F. Abbès, N.G. Tran, B. Abbès, Y.Q. Guo, Modelling of the degradation of mechanical properties of high-density polyethylene based-packaging exposed to amyl acetate solution, Polym. Test. 59, 449–461 (2017) [Google Scholar]
  33. A. Erner, Étude expérimentale du thermoformage assisté par poinçon d'un mélange de polystyrène, Thèse, École des Mines de Paris, 2005 [Google Scholar]
  34. O. Atmani, B. Abbès, F. Abbès, Y.M. Li, S. Batkam, Identification of a thermo-elasto-viscoplastic behavior law for the simulation of thermoforming of high impact polystyrene, AIP Conf. Proc. 120003, 1–6 (2018) [Google Scholar]
  35. J.S. Trent, M.J. Miles, E. Baer, The mechanical behaviour of high-impact polystyrene under pressure, J. Mater. Sci. 14, 789–799 (1979) [Google Scholar]
  36. L. Castellani, C. Maestrini, Rubber-like tensile behaviour of yielded high-impact polystyrene, Polymer 31, 2278–2286 (1990) [Google Scholar]
  37. T. Kuboki, P.-Y. Ben Jar, K. Takahashi, T. Shinmura, Mechanical Deformation of high-impact polystyrene under uniaxial tension at various strain rates, Macromolecules 35, 3584–3591 (2002) [Google Scholar]
  38. T. Ree, H. Eyring, Theory of Non-Newtonian flow. I. Solid plastic system, J. Appl. Phys. 26, 793–800 (1955) [Google Scholar]
  39. O. Yano, Y. Wada, Dynamic mechanical and dielectric relaxations of polystyrene below the glass temperature, J. Polym. Sci. 9, 669–686 (1971) [Google Scholar]
  40. A. Odajima, J. Sohma, M. Koike, Proton magnetic resonance in chain polymers, J. Phys. Soc. Jpn. 12, 272–282 (1957) [CrossRef] [Google Scholar]
  41. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6, 182–197 (2002) [Google Scholar]
  42. H. Gavin, The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems, Department of Civil and Environmental Engineering, Duke University, 2011 [Google Scholar]
  43. A. Shrota, M. Bäker, A study of non-uniqueness during the inverse identification of material parameters, Procedia CIRP 1, 72–77 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.