Open Access
Issue
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 608
Number of page(s) 14
DOI https://doi.org/10.1051/meca/2020083
Published online 30 October 2020
  1. A. Fasana, S. Marchesiello, M. Pirra, L. Garibaldi, A. Torri, Spectral Kurtosis against SVM for best frequency selection in bearing diagnostics, Mecanique & Industry 11 , 489–494 (2010) [CrossRef] [Google Scholar]
  2. M. Kedadouche, M. Thomas, A. Tahan, Cyclostationarity applied to acoustic emission and development of a new indicator for monitoring bearing defects, Mechanics & Industry 15 , 467–476 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  3. K. Ait Sghir, F. Bolaers, O. Cousinard, J. P. Dron, Vibratory monitoring of a spalling bearing defect in variable speed regime, Mechanics & Industry 14 , 129–136 (2013) [CrossRef] [EDP Sciences] [Google Scholar]
  4. O. Djebili, F. Bolaers, A. Laggoun, J. P. Dron, Following the growth of a rolling fatigue spalling for predictive maintenance, Mechanics & Industry 14 , 85–93 (2013) [CrossRef] [EDP Sciences] [Google Scholar]
  5. A. Bejan, Theory of rolling contact heat transfer, J of Heat Transfer 2 , 257–263 (1989) [CrossRef] [Google Scholar]
  6. R. Holm, Calculation of the temperature development in a heated contact with appreciation to sliding contacts, Journal of Applied Mechanics 19 , 369 (1947) [Google Scholar]
  7. Y.L. Chow, M.M. Yovanovich, The shape factor of the capacitance of a conductor, Journal of Applied Physics 53 , 8470–8475 (1982) [Google Scholar]
  8. T.F. Lemczyk, M.M. Yovanovich, Thermal constriction resistance with convective boundary conditions. Half-space contacts, II − Layered half-space contacts, International Journal of Heat and Mass Transfer 9 , 1861–1872 (1988) [Google Scholar]
  9. A.B. Jones, Ball motion and sliding friction in ball bearings, ASME, J. Basic Eng 81 , 1–12 (1959) [CrossRef] [Google Scholar]
  10. T.A. Harris, Rolling Bearing Analysis, 4th Edition, John Wiley and Sons, 2001 [Google Scholar]
  11. N.T. Liao, J.F. Lin, Rolling-Sliding Analysis in Ball Bearing Considering Thermal Effect, Trib. Trans 1 , 1–16 (2015) [Google Scholar]
  12. H.J. Böhmer, T. Lösche, F.J. Ebert, E. Streit, The influence of heat generation in the contact zone on bearing fatigue behaviour, Journal of tribology 3 , 462–467 (1999) [Google Scholar]
  13. Y. Muzychka, M. Yovanovitch, Thermal resistance models for non circular moving heat sources on a half space, Transaction of the ASME, Journal of Heat Transfer 3 , 624–632 (2001) [Google Scholar]
  14. H. Blok, The flash temperature concept, Journal of Wear 6 , 483–494 (1963) [CrossRef] [Google Scholar]
  15. A. Baïri, N. Alilat, J.G. Bauzin, N. Laraqui, Three dimensional stationary thermal behavior of a bearing ball, International Journal of Thermal Sciences 6 , 561–568 (2004) [CrossRef] [Google Scholar]
  16. F. Pouly, C. Changenet, F. Ville, P. Velex, B. Damiens, Power loss predictions in high speed rolling element bearings using thermal networks, Trib. Trans 6 , 957–967 (2010) [CrossRef] [Google Scholar]
  17. K. Yan, Y.T. Wang, Y.S. Zhu, Investigation on heat dissipation characteristic of ball bearing cage and inside cavity at ultra-high rotation speed, Trib. Int 93 , 470–481 (2016) [CrossRef] [Google Scholar]
  18. J. Takabi, M.M. Khonsari, Experimental testing and thermal analysis of ball bearings, Trib. Int 60 , 93–103 (2013) [CrossRef] [Google Scholar]
  19. A. Neurouth, C. Changenet, F. Ville, A. Arnaudon, Thermal modeling of a grease lubricated thrust ball bearing, J. Engineering Tribology 11 , 1266–1275 (2014) [Google Scholar]
  20. J. Takabi, M.M. Khonsari, On the thermally–induced failure of rolling element bearings, Trib. Int 94 , 661–674 (2016) [CrossRef] [Google Scholar]
  21. J. Takabi, M.M. Khonsari, On the thermally-induced seizure in bearings: A review, Trib. Int 91 , 118–130 (2015) [CrossRef] [Google Scholar]
  22. A. Neurouth, C. Changenet, F. Ville, M. Octrue, Influence of rolling element bearing modeling on the predicted thermal behavior of the FZG test rig. Tribology Transactions, 60, 753–761 (2017) [CrossRef] [Google Scholar]
  23. K. Yan, J. Hong, J.H. Zhang, Thermal-deformation coupling in thermal network for transient analysis of spindle-bearing system, International Journal of Thermal Sciences 104 , 1–12 (2016) [CrossRef] [Google Scholar]
  24. D. Zheng, W. Chen, Thermal performances on angular contact ball of high-speed spindle considering structural under oil-air lubrication, Trib. Int 109 , 593–601 (2017) [CrossRef] [Google Scholar]
  25. F. Pouly, C. Changenet, F. Ville, P. Velex, B. Damiens, Investigation on the power losses and thermal behaviour of rolling element bearings, Proceeding of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 224 , 925–933 (2010) [Google Scholar]
  26. Y.R. Jeng, P.Y. Huang, Prediction of temperature rise for ball bearings, Journal of Tribology Transaction 1 , 49–56 (2003) [CrossRef] [Google Scholar]
  27. A. Palmgren, Ball and Roller Bearing Engineering, 3rd edn., SKF Industries, Inc., Burbank, Philadelphia, 1959, 34–41 [Google Scholar]
  28. C. Wagner, Heat transfer from a rotating disk in ambient air, Journal of Applied Physics 9 , 837–839 (1948) [Google Scholar]
  29. N. Tandon, A. Choudhury, An analytical model for the prediction of the vibration response of rolling element bearings due to localized defect, Journal of Sound and Vibration 3 , 275–292 (1997) [Google Scholar]
  30. F. Bogard, Y.K. Debra, Y.Q. Guo, Determination of sensor position for predictive maintenance of revolving machines, International Journal of Solids and Structures 12 , 3159–3173 (2002) [Google Scholar]
  31. C. Changenet, X. Oviedo-Marlot, P. Velex, Power loss predictions in geared transmissions using thermal networks applications to a six speed manual gear box, Transactions of the ASME, Journal of Mechanical Design 128 , 618–625 (2006) [CrossRef] [Google Scholar]
  32. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers, Mc-Graw-Hill, New York, 1968 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.