Open Access
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 625
Number of page(s) 13
Published online 15 January 2021
  1. D. Axinte, Y. Guo, Z. Liao, A.J. Shih, R. M'Saoubi, N. Sugita, Machining of biocompatible materials − Recent advances, CIRP Annals − Manufact. Technol. 68, 629–652 (2019) [CrossRef] [Google Scholar]
  2. T. Hanawa, Research and development of metals for medical devices based on clinical needs, Sci. Technol. Adv. Mater. 13, 064102 (2012) [CrossRef] [Google Scholar]
  3. M.A. Sulaiman, C.C. Haron, J.A. Ghani, M.S. Kasim, Effect of high-speed parameters on uncoated carbide tool in finish turning titanium Ti-6Al-4V ELI, Sains Malaysiana 43, 111–116 (2014) [Google Scholar]
  4. M.A. Sulaiman, C.H. Che Haron, J.A. Ghani, M.S. Kasim, Optimization of turning parameters for titanium alloy Ti-6Al-4V ELI using the response surface method (RSM), J. Adv. Manufact. Technol. 7, 11–28 (2013) [Google Scholar]
  5. H. Singh, V.S. Sharma, S. Singh, M. Dogra, Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI, J. Manufact. Process 39, 241–249 (2019) [CrossRef] [Google Scholar]
  6. A.C. Hoyne, C. Nath, S.G. Kapoor, Cutting temperature measurement during titanium machining with an atomization-based cutting fluid (ACF) spray system, J. Manuf. Sci. Eng. 137, 024502 (2015) [CrossRef] [Google Scholar]
  7. S. Pradhan, S. Singh, C. Prakash, G. Królczyk, A. Pramanik, C.I. Pruncu, Investigation of machining characteristics of hard-to-machine Ti-6Al-4V-ELI alloy for biomedical applications, J. Mat. Res. Technol. 8, 4849–4862 (2019) [CrossRef] [Google Scholar]
  8. J.D. Kechagias, K-E. Aslani, N.A. Founta, N.M. Vaxevanidis, D.E. Manolakos, A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy, Measurement 151, 107213 (2020) [CrossRef] [Google Scholar]
  9. D.R. Shah, S.N. Bhavsar, An experimental investigation of tool nose radius and machining parameters on TI-6AL-4V (ELI) using grey relational analysis, regression and ANN models, Int. J. Data Net. Sci. 3, 291–304 (2019) [CrossRef] [Google Scholar]
  10. Anurag, R. Kumar, K.K. Joshi, R.K. Das, Analysis of chip reduction coefficient in turning of Ti-6Al-4V ELI, IOP Conf. Series Mater. Sci. Eng. 390, 012113 (2018) [CrossRef] [Google Scholar]
  11. V.G. Sargade, S.R. Nipanikar, S.M. Meshram, Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment, Int. J. Indust. Eng. Comput. 7, 257–266 (2018) [Google Scholar]
  12. H.G. Shin, S.H. Yoo, S.W. Park, D.P. Hong, A study on the cutting characteristics and detection of the abnormal tool state in turning of Ti-6Al-4V ELI, Appl. Mech. Mater. 433–435, 2025–2030 (2013) [CrossRef] [Google Scholar]
  13. G.A. Ibrahim, H. Arinal, Zulhanif, C.H. Che Haron, Microstructure Alterations of Ti-6Al-4V ELI during turning by using tungsten carbide inserts under dry cutting condition, Int. J. Eng. Technol. Dev. 1, 37–40 (2013) [Google Scholar]
  14. G.A. Ibrahim, C.H. Che Haron, J.A. Ghani, Evaluation of PVD-inserts performance and surface integrity when turning Ti-6Al-4v ELI under dry machining, Adv. Mater. Res. 264, 1050–1055 (2011) [CrossRef] [Google Scholar]
  15. G.A. Ibrahim, C.H. Che Haron, J.A. Ghani, The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI, J. Appl. Sci. 9, 121–127 (2009) [CrossRef] [Google Scholar]
  16. G.A. Ibrahim, C.H. Che Haron, J.A. Ghani, Surface integrity of TI-6AL-4V ELI when machined using coated carbide tools under dry cutting condition, Int. J. Mech. Mater. Eng. 4, 191–196 (2009) [Google Scholar]
  17. S. Sartori, A. Ghiotti, S. Bruschi, Solid lubricant-assisted minimum quantity lubrication and cooling strategies to improve Ti6Al4V machinability in finishing turning, Tribol. Int. 118, 287–294 (2018) [CrossRef] [Google Scholar]
  18. R. Dillibabu, K. Sivasakthivel, S. Kumar, Optimization of process parameters in dry and wet machining of Ti-6AL-4V ELI using Taguchi method, Int. J. Des. Manufact. Technol. 4, 15–21 (2014) [Google Scholar]
  19. C.H. Che Haron, M.A. Sulaiman, J.A. Ghani, M.S. Kasim, E. Mohamad, Performance of carbide tool in high speed turning of Ti-6AL-4V ELI under conventional coolant and minimal quantity lubrication, APRN J. Eng. Appl. Sci. 11, 4817–4821 (2016) [Google Scholar]
  20. M.S. Asiyah, M.A. Sulaiman, R. Shahmi, R. Zuraimi, E. Mohamad, C.H. Che Haron, J.A. Ghani, Performance of CVD coated carbide tool by optimizing machining parameters during turning titanium alloy TI-6AL-4V ELI in flooded condition, J. Adv. Manufact. Technol. 12, 401–412 (2018) [Google Scholar]
  21. R.R. Mishra, R. Kumar, A.K. Sahoo, A. Panda, Machinability behaviour of biocompatible Ti-6Al-4V ELI titanium alloy under flood cooling environment, Mater. Today Proceed. 23, 536–540 (2020) [CrossRef] [Google Scholar]
  22. S.S. Rahman, Md. Z.I. Ashraf, A.N. Amin, M.S. Bashar, Md. F.K. Ashik, M. Kamruzzaman, Tuning nanofluids for improved lubrication performance in turning biomedical grade titanium alloy, J. Clean Prod. 206, 180–196 (2019) [CrossRef] [Google Scholar]
  23. B. Słodki, W. Zebala, G. Struzikiewicz. Turning titanium alloy, grade 5 ELI, with the implementation of high pressure coolant, Materials 12, 768 (2019) [CrossRef] [Google Scholar]
  24. R. Kumar, A.K. Sahoo, P.C. Mishra, R.K. Das, Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation, Adv. Manufact. 6, 52–70 (2020) [CrossRef] [Google Scholar]
  25. M. Kiyak, B. Kaner, I. Sahin, B. Aldemir, O. Cakir, The dependence of tool overhang on surface quality and tool wear in the turning process, Int. J. Adv. Manufact. Technol. 51, 431–438 (2010) [CrossRef] [Google Scholar]
  26. M. Senthilkumar, A. Prabukarthi, V. Krishnaraj, Machining of CFRP/Ti6Al4V stacks under minimal quantity lubricating condition, J. Mech. Sci. Technol. 32, 3787–3796 (2018) [CrossRef] [Google Scholar]
  27. M. Mia, M.H. Razi, I. Ahmad, Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network, Int. J. Adv. Manufact. Technol. 9–12, 3211–3223 (2017) [CrossRef] [Google Scholar]
  28. G.T. Smith, G.T, Industrial Metrology. doi: 10.1007/978-1-4471-3814-3 [Google Scholar]
  29. E.J. Abbott, F.A. Firestone, Specifying surface quality: a method based on accurate measurement and comparison, Mech. Eng. 55, 569–572 (1993) [Google Scholar]
  30. S. Zhu, P. Huang, Influence mechanism of morphological parameters on tribological behaviors based on bearing ratio curve, Tribol. Int. 109, 10–18 (2017) [CrossRef] [Google Scholar]
  31. A.C. Cîrstoiu, Surface roughness evaluation in turning based on abbott − firestone curve, The Roma Rev. Precis. Mech. Opt. Mech. 20, 163–169 (2010) [Google Scholar]
  32. T.D.B. Jacobs, Junge, L. Pastewka, Quantitative characterization of surface topography using spectral analysis, Surf. Topogr. Metrol. Prop. 5, 013001 (2017) [CrossRef] [Google Scholar]
  33. S. Roy, R. Kumar, A.K. Sahoo, A. Pandey, A. Panda, Investigation on hard turning temperature under a novel pulsating MQL environment: an experimental and modelling approach, Mech. Ind. 21, 605 (2020) [CrossRef] [Google Scholar]
  34. S. Yi, J. Li, J. Zhu, X. Wang, J. Mo, S. Ding, Investigation of machining Ti-6Al-4V with graphene oxide nanoflfluids: tool wear, cutting forces and cutting vibration, J. Manufact. Process 49, 35–49 (2020) [CrossRef] [Google Scholar]
  35. M.S. Kasim, C.H. Che Haron, J.A. Ghani, M.A. Sulaiman, M.Z.A. Yazid, Wear mechanism and notch wear location prediction model in ball nose end milling of Inconel 718, Wear 302, 1171–1179 (2013) [CrossRef] [Google Scholar]
  36. P.N. Rao, Manufacturing technology volume 2: metal cutting and machine tools, Tata McGraw-Hill, 3rd ed. (2013) [Google Scholar]
  37. A. Panda A.K. Sahoo, I. Panigrahi, A.K. Rout, Prediction models for on-line cutting tool and machined surface condition monitoring during hard turning considering vibration signal, Mech. Ind., Mechanics & Industry 21, 520 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.