Mechanics & Industry
Volume 22, 2021
Advances of junior researchers in aerospace sciences: a focus on innovative design
Article Number 39
Number of page(s) 19
Published online 08 July 2021
  1. European Commission, Flightpath 2050: Europe's Vision for Aviation. European Commission, Directorate General for Research and Innovation, Directorate General for Mobility and Transport (2011) [Google Scholar]
  2. D.S. Lee, G. Pitari, V. Frewe, K. Gierens et al, Transport impacts on atmosphere and climate: aviation, Atmos. Environ. 44, 4678–4734 (2010) [CrossRef] [Google Scholar]
  3. O. Dessens, M.O. Köhler, H.L. Rogers, R.L. Jones, J.A. Pyle, Aviation and climate change, Transp. Policy 34, 14–20 (2014) [Google Scholar]
  4. Eurocontrol, European Aviation in 2040, Challenges of Growth, Annex 1, Flight Forecast to 2040 (2018) [Google Scholar]
  5. Airbus, Cities, Airports & Aircraft - 2019–2038, Global Market Outlook (2019) [Google Scholar]
  6. A.L. Tasca, V. Cipolla, K. Abu Salem, M. Puccini, Innovative box-wing aircraft: emissions and climate change, Sustainability 13, 3282 (2021) [Google Scholar]
  7. B. Brelje, J. Martins, Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches, Progr. Aerospace Sci. 104, 1–19 (2019) [Google Scholar]
  8. C. Pornet, A. Isikveren, Conceptual design of hybrid-electric transport aircraft, Progr. Aerospace Sci. (2015) [Google Scholar]
  9. G. Palaia, D. Zanetti, K. Abu Salem, V. Cipolla, V. Binante, THEA-CODE: a design tool for the conceptual design of hybrid-electric aircraft with conventional or unconventional airframe configurations, Mech. Ind. 22, 19 (2021) [Google Scholar]
  10. D. Schmitt, Challenges for unconventional transport aircraft configurations, Air Space Europe 3, 67–72 (2001) [Google Scholar]
  11. IATA, Aircraft Technology Roadmap to 2050, Report (2020) [Google Scholar]
  12. C. Werner-Westphal, W. Heinze, P. Horst, Multidisciplinary integrated preliminary design applied to unconventional aircraft configurations, J. Aircraft 45, 2 (2008) [Google Scholar]
  13. R.H. Liebeck, Design of the blended wing body subsonic transport, J. Aircraft 41, 1 (2004) [Google Scholar]
  14. N. Qin, A. Vavalle, A. Le Moigne, M. Laban, K. Hackett, P. Weinerfelt, Aerodynamic considerations of blended wing body aircraft, Progr. Aerospace Sci. 40, 321–343 (2004) [Google Scholar]
  15. J. Wolkovitch, The joined wing: an overview, J. Aircraft 23, 3 (1986) [Google Scholar]
  16. R. Cavallaro, L. Demasi, Challenges, ideas, and innovations of joined-wing configurations: a concept from the past, an opportunity for the future, Progr. Aerospace Sci. 87, 1–93 (2016) [Google Scholar]
  17. L. Prandtl, Induced drag of multiplanes, NACA-TN-182 (1924), url: [Google Scholar]
  18. A. Frediani, G. Montanari, Best wing system: an exact solution of the Prandtl's problem, in Variational Analysis and Aerospace Engineering, Springer Optimization and Its Applications (Springer, 2009), vol 33, 183–211 [Google Scholar]
  19. A. Frediani, V. Cipolla, E. Rizzo, The PrandtlPlane configuration: overview on possible applications to civil aviation, variational analysis and aerospace engineering: mathematical challenges for aerospace design, in Springer Optimization and Its Applications (Springer, 2012), vol 66, 179–210 [Google Scholar]
  20. A. Frediani, V. Cipolla, F. Oliviero, IDINTOS: the first prototype of an amphibious PrandtlPlane-shaped aircraft, Aerotecnica Missili Spazio 99, 233–249 (2016) [Google Scholar]
  21. A. Frediani, V. Cipolla, F. Oliviero, Design of a prototype of light amphibious PrandtlPlane, in 56th AIAA /ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, Kissimmee, Florida, 2015 [Google Scholar]
  22. PARSIFAL Project, website, [Google Scholar]
  23. M. Kousolidou, D. Violato, Towards Climate-Neutral Aviation, European Commission Technical Report (2020) [Google Scholar]
  24. A. Frediani, V. Cipolla, K. Abu Salem, V. Binante, M.P. Scardaoni, Conceptual design of PrandtlPlane civil transport aircraft, Proc. Inst. Mech. Eng. G 234–10, 1675–1687 (2019) [Google Scholar]
  25. E. Rizzo, A. Frediani, Application of optimisation algorithms to aircraft aerodynamics, in Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications (Springer, 2009), vol. 33, 419–446 [Google Scholar]
  26. E. Rizzo, Optimization Methods Applied to the preliminary design of innovative non conventional aircraft configurations, Ph.D. Thesis, University of Pisa, 2009 [Google Scholar]
  27. E.F. Curtis, M.L. Overton, A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization, SIAM J. Optim. 22, 474–500 (2012) [CrossRef] [Google Scholar]
  28. S.P. Han, A globally convergent method for nonlinear Programming, J. Optim. Theory Appl. 22, 297–309 (1977) [Google Scholar]
  29. B. Addis, M. Locatelli, F. Schoen, Local optima smoothing for global optimization, Optim. Methods Softw. 20, 417–437 (2005) [Google Scholar]
  30. AVL (Athena Vortex Lattice), Version 3.36, website, url: [Google Scholar]
  31. V. Cipolla, A. Frediani, K. Abu Salem, V. Binante, E. Rizzo, M. Maganzi, Preliminary transonic CFD analyses of a PrandtlPlane transport aircraft, Transp. Res. Proc. 29, 82–91 (2018) [Google Scholar]
  32. M. Carini, M. Meheut, S. Kanellopoulos, V. Cipolla, K. Abu Salem, Aerodynamic analysis and optimization of a boxwing architecture for commercial airplanes, AIAA SciTech Forum, Orlando (2020) [Google Scholar]
  33. D.P. Raymer, Aircraft Design: A Conceptual Approach, AIAA Education Series (1992) [Google Scholar]
  34. Association of European Airlines, AEA, Short-Medim Range Aircraft AEA Requirements, Report G(T) 5656 (1987) [Google Scholar]
  35. W.H. Mason, Analytic models for technology integration in aircraft design, in AIAA Aircraft Design, Systems and Operations Conference, Dayton, 1990 [Google Scholar]
  36. M. Beltramo, D. Trapp, B. Kimoto, D. Marsh, Parametric study of transport aircraft systems cost and weight, NASA Report CR151970, 1977 [Google Scholar]
  37. F. Oliviero, Preliminary design of a very large PrandtlPlane freighter and airport network analysis, Ph.D. Thesis, University of Pisa, 2015 [Google Scholar]
  38. L. Cappelli, G. Costa, V. Cipolla, A. Frediani, F. Oliviero, E. Rizzo, Aerodynamic optimization of a large PrandtlPlane configuration, Aerotecnica Missili Spazio 95, 163–175 (2016) [Google Scholar]
  39. V. Cipolla, A. Frediani, K. Abu Salem, M. Picchi Scardaoni, A. Nuti, V. Binante, Conceptual design of a box wing aircraft for the air transport of the future, AIAA Aviation Forum, Atlanta (2018) [Google Scholar]
  40. K. Abu Salem, V. Cipolla, M. Carini, M. Méheut, S. Kanellopoulos, V. Binante, M. Maganzi, Aerodynamic design and preliminary optimization of a commercial PrandtlPlane aircraft, in Proceedings of 8th EUCASS Conference, Madrid , 2019 [Google Scholar]
  41. V. Cipolla, K. Abu Salem, M. Picchi Scardaoni, V. Binante, Preliminary design and performance analysis of a box-wing transport aircraft, in AIAA SciTech Forum, Orlando , 2020 [Google Scholar]
  42. D.A. van Ginneken, M. Voskuijl, M.J. van Tooren, A. Frediani, Automated Control Surface Design and Sizing for the Prandtl Plane, in AIAA SciTech Forum, 51th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando , 2010 [Google Scholar]
  43. E. Torenbeek, Synthesis of subsonic airplane design (Springer, Netherlands, 1982) [Google Scholar]
  44. K. Abu Salem, G. Palaia, M. Bianchi, D. Zanetti, V. Cipolla, V. Binante, Preliminary take-off analysis and simulation for a PrandtlPlane commercial aircraft, Aerotecnica Missili Spazio 99, 203–216 (2020) [Google Scholar]
  45. J. Sun, J.M. Hoeckstra, J. Ellerbroek, Aircraft Drag Polar Estimation Based on a Stochastic Hierarchical Model, Eighth SESAR Innovation Days, (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.