Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 49
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2021050
Published online 21 December 2021
  1. J. Ormondroyd, J. Den Hartog, The theory of damped vibration absorber, J. Appl. Mech. 50, 7 (1929) [Google Scholar]
  2. J. Den Hartog, Mechnical Vibrations, 4th edn., McGraw-Hill, New York, 1956 [Google Scholar]
  3. T. Asami, O. Nishihara, A. Baz, Analytical solutions to H and H2 optimization of dynamic vibration absorbers attached to damped linear systems, Trans. ASME 124, 284 (2002) [Google Scholar]
  4. I. Jordanov, B. Cheshankov, Optimal design of linear and non-linear dynamic vibration absorbers, J. Sound Vib. 123, 157–170 (1988) [CrossRef] [Google Scholar]
  5. G. Pennisi, B. Mann, N. Naclerio, C. Stephan, G. Michon, Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester, J. Sound Vib. 437, 340–357 (2018) [CrossRef] [Google Scholar]
  6. S. Mahajan, R. Redfield, Power flow in linear, active vibration isolation systems, J. Vib. Acoust. 120, 571–578 (1998) [CrossRef] [Google Scholar]
  7. J. Rohlfing, S. Elliott, P. Gardonio, Feedback compensator for control units with proof-mass electrodynamic actuators, J. Sound Vibr. 331, 3437–3450 (2012) [CrossRef] [Google Scholar]
  8. M. Zilletti, Feedback control unit with an inerter proof-mass electrodynamic actuator, J. Sound Vibr. 369, 16–28 (2016) [CrossRef] [Google Scholar]
  9. S. Camperi, M.G. Tehrani, S.J. Elliott, Parametric study on the optimal tuning of an inertial actuator for vibration control of a plate: theory and experiments, J. Sound Vibr. 435 (2018) [CrossRef] [Google Scholar]
  10. S. Chesné, G. Inquieté, P. Cranga, F. Legrand, B. Petitjean, Innovative hybrid mass damper for dual-loop controller. Mech. Syst. Signal Process. 115, 514–523 (2019) [CrossRef] [Google Scholar]
  11. R.C. Ümütlü, H. Ozturk, B. Bidikli, A robust adaptive control design for active tuned mass damper systems of multistory buildings, J. Vibr. Control 0, 1077546320966236 (2020) [Google Scholar]
  12. L. Huo, G. Song, H. Li, K. Grigoriadis, h robust control design of active structural vibration suppression using an active mass damper, Smart Mater. Struct. 17, 015021 (2007) [Google Scholar]
  13. J. Yuan, Hybrid dynamic vibration absorption by zero/pole placement. ASME J. Vibr. Acoust. 122, 466–469 (2000) [CrossRef] [Google Scholar]
  14. X. Yan, Z.-D. Xu, Q.-X. Shi, Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper. J. Vibr. Control 26, 2037–2049 (2020) [CrossRef] [Google Scholar]
  15. A. Paknejad, G. Zhao, S. Chesné, A. Deraemaeker, C. Collette, Hybrid electromagnetic shunt damper for vibration control. J. Vibr. Acoust. 143, 021010 (2021) [CrossRef] [Google Scholar]
  16. G. Paillot, S. Chesné, D. Rémond, Hybrid coupled damper for the mitigation of torsional vibrations and rotational irregularities in an automotive crankshaft: concept and design subtleties, Mech. Based Des. Struct. Mach. 0, 1–18 (2021) [CrossRef] [Google Scholar]
  17. C. Collette, S. Chesné, Robust hybrid mass damper, J. Sound Vibr. 375 (2016) [CrossRef] [Google Scholar]
  18. S. Chesné C. Collette, Experimental validation of fail-safe hybrid mass damper, J. Vibr. Control, 24, 4395–4406 (2018) [CrossRef] [Google Scholar]
  19. A. Preumont, Vibration Control of Active Structures An Introduction, 2nd edn., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002 [Google Scholar]
  20. C. Fuller, A. von Flotow, Active control of sound and vibration. IEEE 0272-1708 (1995) [Google Scholar]
  21. S. Griffin, J. Gussy, S.A. Lane, B.K. Henderson, D. Sciulli, Virtual skyhook vibration isolation system, J. Vibr. Acoust. 124, 63–67 (2001) [Google Scholar]
  22. M. Auleley, O. Thomas, C. Giraud-Audine, H. Mahé, Enhancement of a dynamic vibration absorber by means of an electromagnetic shunt. J. Intell. Mater. Syst. Struct. 32(3), 331–354 (2021) [CrossRef] [Google Scholar]
  23. D. Demetris, N. Nikolaos, Hybrid semi-active mass dampers in structures; assessing and optimising their damping capacity, Proc. Eng. 199, 3103–3108 (2017) [CrossRef] [Google Scholar]
  24. C. Meinhardt, N. Nikitas, D. Demetriou, Application of a 245 metric ton dual-use active TMD system, Proc. Eng. 199, 1719–1724 (2017) [CrossRef] [Google Scholar]
  25. N. Alujevic, I. Catipovic, S. Malenica, I. Senjanovic, N. Vladimir, Stability, performance and power flow of active u-tube anti-roll tank, Eng. Struct. 211, 110267 (2020) [CrossRef] [Google Scholar]
  26. J. Rodriguez, P. Cranga, S. Chesne, L. Gaudiller, Hybrid active suspension system of a helicopter main gearbox, J. Vibr. Control 24, 956–974 (2018) [CrossRef] [Google Scholar]
  27. J. Slotine, W. Li, Applied nonlinear control Englewood Cliffs, Prentice Hall, 1991 [Google Scholar]
  28. D.J. Hartog, Mechanical Vibrations, 4th edn., Mc Graw-Hill, New York, 1956 [Google Scholar]
  29. S. Chesné, C. Collette, Towards low consumption smart dampers. Forum Acusticum, Lyon, France (2020) 195–198 [Google Scholar]
  30. H. Garnier, M. Mensler, A. Richard, Continuous-time model identification from sampled data: implementation issues and performance evaluation, Int. J. Control 76, 1337–1357 (2003) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.