Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 48
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2021047
Published online 10 December 2021
  1. T. Oomen et al., Next-generation wafer stage motion control: Connecting system identification and robust control, in: 2012 American Control Conference (ACC), Montreal, QC 2012, pp. 2455–2460 [CrossRef] [Google Scholar]
  2. M.J.C. Ronde, Feedforward control for lightweight motion systems, PhD thesis, Eindhoven University of Technology, 2014 [Google Scholar]
  3. T. Oomen et al., Connecting system identification and robust control for next-generation motion control of a wafer stage, IEEE Trans. Control Syst. Technol. 22, 102–118 (2013) [Google Scholar]
  4. T. Oomen et al., Inferential motion control: Identification and robust control framework for positioning an unmeasurable point of interest, IEEE Trans. Control Syst. Technol. 23, 1602–1610 (2014) [Google Scholar]
  5. T. Oomen et al., Inferential motion control: Identification and robust control with unmeasured performance variables, in: 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL 2011, pp. 964–969 [CrossRef] [Google Scholar]
  6. M. Dorosti et al., Finite element model reduction and model updating of structures for control, IFAC Proc. 47, 4517–4522 (2014) [Google Scholar]
  7. G. Van Baars, Getting high tech systems in shape and fit for the future, Mikronie7k 52, 30–36 (2011) [Google Scholar]
  8. Y. Jiang et al., Coupled dynamic modeling and analysis of ultra-precision 6-DOF fine stage, Proc. Chin. Soc. Electr. Eng. 30, 5451–5457 (2014) [Google Scholar]
  9. T. Oomen, E. Grassens, F. Hendriks, Inferential motion control: Identification and robust control framework for positioning an unmeasurable point of interest, IEEE Trans. Control Syst. Technol. 23, 1602–1610 (2014) [Google Scholar]
  10. J.G. Vogel et al., Estimation of the deformation of a plate using a limited number of sensors, in: ASPE Spring Topical Meeting MIT Laboratory for Manufacturing and Productivity Annual Summit, Cambridge, Massachusetts, 2013, pp. 21–23 [Google Scholar]
  11. R.A.C.M. Beerens et al., Positioning system, lithographic apparatus and device manufacturing method, U.S. Patent, 9, 383, 659[P], 2016 [Google Scholar]
  12. T. Castenmiller et al., Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform, Proc. SPIE 7640, Optical Microlithography XXIII, 76401N (2010) [Google Scholar]
  13. K.W. Verkerk, H. Butler, P.P.J. Van den Bosch, Improved disturbance rejection for high precision systems through estimation of the flexible modes[C], 2015 IEEE Conference on Control Applications (CCA), 1191–1196 (2015) [CrossRef] [Google Scholar]
  14. R. Voorhoeve et al., Estimating structural deformations for inferential control: a disturbance observer approach, IFACPapersOnLine 49, 642–648 (2016) [Google Scholar]
  15. Mooren, et al., Compensating quasi-static disturbances for inferential control: an observer-based approach applied to a wafer stage, in: Proceedings of the 2018 IEEJ International Workshop on Sensing, Actuation, Motion Control, and Optimization Tokyo, Japan, 2018 [Google Scholar]
  16. R. de Rozario et al., Identification of position-dependent mechanical systems, in: 35th Benelux Meeting on Systems and Control, Soesterberg, Netherlands, 2016 pp. 22–24 [Google Scholar]
  17. M. Dorosti, Reduced-other model updating for prediction of performance variables in mechanical structures, PhD thesis, Eindhoven University of Technology, 2017 [Google Scholar]
  18. R. Voorhoeve et al., Identifying position-dependent mechanical systems: A modal approach with applications to wafer stage control, arXiv preprint arXiv:1807.06942 (2018) [Google Scholar]
  19. S.H.J. Van der Kleij, Shape estimation of a compliant wafer chuck in lithography systems, Master thesis, Delft University of Technology, 2014 [Google Scholar]
  20. A. Koevoets et al., Thermal-elastic compensation models for position control, in: Proceedings of the 24th ASPE Annual Meeting, United States, 2009 [Google Scholar]
  21. T. Castenmiller, M.F.V.D., Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform, Proc. SPIE 7640, 511–519 (2010) [Google Scholar]
  22. S. Cho, C. Yun, S. Sim, Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model, Smart Struct. Syst. 15, 645–663 (2015) [CrossRef] [Google Scholar]
  23. S. Cho et al., Reference-free displacement estimation of bridges using kalman filter-based multimetric data fusion, J. Sens, 1–9 (2016) [Google Scholar]
  24. T. Örtel, J.F. Wagner, F. Saupe, Integrated motion measurement illustrated by a cantilever beam, Mech. Syst. Signal Process. 34, 131–145 (2013) [CrossRef] [Google Scholar]
  25. D.A. Krohn, T. MacDougall, A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, SPIE Press, Bellingham, WA, 2014 [CrossRef] [Google Scholar]
  26. R. Di Sante, Fiber optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications, Sensors 15, 18666–18713 (2015) [CrossRef] [PubMed] [Google Scholar]
  27. K.T.V. Grattan, B.T. Meggitt, L.S. Grattan, Optical Fiber Sensor Technology, Springer, 2000 [Google Scholar]
  28. Y. Zhao, Principles and Application Technology of Optical Fiber Sensors, Tsinghua University Press, Beijing, 2007 [Google Scholar]
  29. A. Dandridge, A.B. Tveten, T.G. Giallorenzi, Homodyne demodulation scheme for fiber optic sensors using phase generated carrier, IEEE J. Quant. Electr. 18, 1647–1653 (1982) [CrossRef] [Google Scholar]
  30. Y. Yu, Research on Zygo Interferometer and Its Application, Master thesis, Tianjin University, 2005 [Google Scholar]
  31. A. Prieto, B. Prieto, E.M. Ortigosa et al., Neural networks: An overview of early research, current frameworks and new challenges, Neurocomputing 214, 242–268 (2016) [CrossRef] [Google Scholar]
  32. K. Cho et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078 (2014) [Google Scholar]
  33. I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mat, 1992 [CrossRef] [Google Scholar]
  34. R. Yan, Base wavelet selection criteria for non-stationary vibration analysis in bearing health diagnosis, PhD thesis, University of Massachusetts Amherst, 2014 [Google Scholar]
  35. J. Sola, J. Sevilla, Importance of input data normalization for the application of neural networks to complex industrial problems, IEEE Trans. Nucl. Sci. 44, 1464–1468 (1997) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.