Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 51
Number of page(s) 18
DOI https://doi.org/10.1051/meca/2021049
Published online 22 December 2021
  1. M.H. Ahmadi, M.A. Nazari, R. Ghasempour, F. Pourfayaz, M. Rahimzadeh, T. Ming, A review on solar-assisted gas turbines, Energy Sci. Eng. 6, 658–674 (2018) [CrossRef] [Google Scholar]
  2. Y. Ahn, S.J. Bae, M. Kim, et al., High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors, Nucl. Eng. Technol. 47, 647–661 (2015) [CrossRef] [Google Scholar]
  3. A.H. Mohammed, E.H. Mouhammad, A.H. Hasan, M.K. Abed, S. Anas, A review paper on heat transfer and flow dynamics in subsonic circular jets impinging on rotating disk, Energy Rep. 6, 834–842 (2020) [CrossRef] [Google Scholar]
  4. M. Kim, D. Kim, E. Yeom, K.C. Kim, Experimental study on heat transfer and flow structures of feedback-free sweeping jet impinging on a flat surface, Int. J. Heat Mass Transfer. 159 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120085 [Google Scholar]
  5. F.J.G. Ortiz, M.J. Salas, J.O. Casanova, Application of shear-thinning and shear-thickening fluids to computational fluid mechanics of high-Reynolds impinging turbulent jets for cooling engineering, Int. J. Therm. Sci. 162 (2021). DOI: 10.1016/j.ijthermalsci.2020.106753 [Google Scholar]
  6. P. Gil, J. Wilk, R. Smusz, R. Gałek, Centerline heat transfer coefficient distributions of synthetic jets impingement cooling, Int. J. Heat Mass Transfer. 160 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120147 [Google Scholar]
  7. J. Kansy, T. Kalmbach, A.E. Loges, J. Treier, T. Wetzel, A. Wiebelt, Determination of effective heat transfer area on vertical surfaces subject to spray and impinging jet, Appl. Thermal Eng. 184 (2021). DOI: 10.1016/j.applthermaleng.2020.116303 [CrossRef] [Google Scholar]
  8. G. Sapra, S. Chander, Effect of operating and geometrical parameters of tangential entry type dual swirling flame burner on impingement heat transfer, Appl. Thermal Eng. 181 (2020). DOI: 10.1016/j.applthermaleng.2020.115936 [CrossRef] [Google Scholar]
  9. D.J. Erasmus, M. Lubkoll, T.W.V. Backström, Jet impingement heat transfer within a hemisphere, Heat Mass Transfer. 57, 1–18 (2020) [Google Scholar]
  10. S.M. Illyas, B.R.R. Bapu, V.V.S. Rao, Heat transfer and flow visualization of swirling impinging jet on flat surface using helicoid inserts, J. Vis. 21, 729–749 (2018) [CrossRef] [Google Scholar]
  11. P. Xu, B. Yu, S. Qiu, H.J. Poh, A.S. Mujumdar, Turbulent impinging jet heat transfer enhancement due to intermittent pulsation, Int. J. Therm. Sci. 49, 1247–1252 (2010) [CrossRef] [Google Scholar]
  12. J.L. Svantesson, M. Ersson, P.G. Jonsson, Effect of froude number on submerged gas blowing characteristics, Materials (Basel, Switzerland) 14 (2021). DOI: 10.3390/ma14030627 [Google Scholar]
  13. M. Raizner, R. van Hout, Effect of impinging jet pulsation on primary and secondary vortex characteristics, Int. J. Heat Mass Transfer 151, 14 (2020) [Google Scholar]
  14. S.M.H.B. Abadi, S. Zirak, M.R. Zargarabadi, Effect of pulsating injection and mainstream attack angle on film cooling performance of a gas turbine blade, Phys. Fluids 32 (2020). DOI: 10.1063/5.0029110 [Google Scholar]
  15. E. Svabenska, N. Pizurova, P. Roupcova, et al., Effect of shock wave on microstructure of silicon steel, Surf. Interfaces 20 (2020). DOI: 10.1016/j.surfin.2019.100415 [Google Scholar]
  16. S. Rakhsha, M.R. Zargarabadi, S. Saedodin, Experimental and numerical study of flow and heat transfer from a pulsed jet impinging on a pinned surface, Exp. Heat Transf.16. DOI: 10.1080/08916152.2020.1755388 [Google Scholar]
  17. S. Abishek, R. Narayanaswamy, Low frequency pulsating jet impingement boiling and single phase heat transfer, Int. J. Heat Mass Transfer. 159 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120052 [CrossRef] [Google Scholar]
  18. M.A. Pakhomov, V.I. Terekhov, RANS simulation of the effect of pulse form on fluid flow and convective heat transfer in an intermittent round jet impingement, Energies 13 (2020). DOI: 10.3390/en13154025 [CrossRef] [Google Scholar]
  19. A.Ü. Tepe, Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface, Int. J. Therm. Sci. 162 (2021). DOI: 10.1016/j.ijthermalsci.2020.106792 [Google Scholar]
  20. M. Kim, D. Kim, E. Yeom, Measurement of three-dimensional flow structure and transient heat transfer on curved surface impinged by round jet, Int. J. Heat Mass Transfer 161 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120279 [Google Scholar]
  21. N. Uddin, S.O. Neumann, B. Weigand, B.A. Younis, LES investigation of a passively excited impinging jet, Int. J. Heat Mass Transfer 165 (2021). DOI: 10.1016/j.ijheatmasstransfer.2020.120705 [CrossRef] [Google Scholar]
  22. A.Ü. Tepea, Ü. Uysalb, Y. Yetişkenc, K. Arslan, Jet impingement cooling on a rib-roughened surface using extended jet holes, Appl. Therm. Eng. 178 (2020). DOI: 10.1016/j.applthermaleng.2020.115601 [Google Scholar]
  23. A.R. Salem, F.N. Nourin, M. Abousabae, R.S. Amano, Experimental and numerical study of jet impingement cooling for improved gas turbine blade internal cooling with in-line and staggered nozzle arrays, Energy Resour. Technol. 143, (2020). DOI: 10.1115/1.4047600 [Google Scholar]
  24. K. Marzec, Influence of jet position on local heat transfer distribution under an array of impinging nozzles with non-planar contour of the cooled surface, Heat Transfer Eng. 42 1506–1521(2020) [Google Scholar]
  25. A.Ü. Tepe, Y. Yetisken, Ü. Uysal, K. Arslan, Experimental and numerical investigation of jet impingement cooling using extended jet holes, Int. J. Heat Mass Transfer 158 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.119945 [Google Scholar]
  26. P. Lapka, A. Cieplinski, A. Rusowicz, Numerical model and analysis of heat transfer during microjets array impingement, Energy 203, 9 (2020) [Google Scholar]
  27. S. Gurgul, T. Kura, E. Fornalik-Wajs, Numerical analysis of turbulent heat transfer in the case of minijets array, Symmetry-Basel 12 (2020). DOI: 10.3390/sym12111785 [Google Scholar]
  28. M.M. Ehsan, S. Duniam, J. Li, Z. Guan, H. Gurgenci, A. Klimenko, A comprehensive thermal assessment of dry cooled supercritical CO2 power cycles, Appl. Thermal Eng. 166, (2019). DOI: 10.1016/j.applthermaleng.2019.114645 [Google Scholar]
  29. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley and Sons, Inc, New York 2010 [Google Scholar]
  30. F. Afroz, Sharif, Numerical investigation of heat transfer from a plane surface due to turbulent annular swirling jet impingement, Int. J. Therm. Sci. 151 (2020). DOI: 10.1016/j.ijthermalsci.2019.106257 [CrossRef] [Google Scholar]
  31. M.F. R., Influence of free stream values on k-ω turbulence model predictions, AIAA J. 1657–1659 (1992) [Google Scholar]
  32. ANSYS Inc., ANSYS Fluent Theory Guide (ANSYS Inc., 2019) [Google Scholar]
  33. I. FP, D. DP, B. TL, Fundamentals of Heat and Mass Transfer, John Wiley and Sons, New York, Inc, 2010 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.