Open Access

This article has an erratum: []

Mechanics & Industry
Volume 23, 2022
Article Number 5
Number of page(s) 13
Published online 17 February 2022
  1. M. Li, T. Yu, R. Zhang, L. Yang, H. Li, W. Wang, MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid, Int. J. Adv. Manufactur. Technol. 99, 1735–1753 (2018) [CrossRef] [Google Scholar]
  2. M.A. Bashir, M. Mia, N.R. Dhar, Investigations on surface milling of hardened AISI 4140 steel with pulse jet MQL applicator, J. Inst. Eng. Ser. C 99, 301–314 (2016) [Google Scholar]
  3. L.R. da Silva, D.A. da Silva, F.V. dos Santos, F.J. Duarte, Study of 3D parameters and residual stress in grinding of AISI 4340 steel hardened using different cutting fluids, Int. J. Adv. Manufactur. Technol. 100, 895–905 (2018) [Google Scholar]
  4. A.R.C. Sharman, J.I. Hughes, K. Ridgway, An analysis of the residual stresses generated in Inconel 718 (TM) when turning, J. Mater. Process Tech. 173, 359–367 (2006) [CrossRef] [Google Scholar]
  5. J.-g. Li, S.-q. Wang, Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances, Int. J. Adv. Manufactur. Technol. 89, 997–1012 (2016) [Google Scholar]
  6. W. Ding, L. Zhang, Z. Li, Y. Zhu, H. Su, J. Xu, Review on grinding-induced residual stresses in metallic materials, Int. J. Adv. Manufactur. Technol. 88, 2939–2968 (2016) [Google Scholar]
  7. W. Jomaa, V. Songmene, P. Bocher, An investigation of machining-induced residual stresses and microstructure of induction-hardened AISI 4340 steel, Mater. Manufactur. Process. 31, 838–844 (2015) [Google Scholar]
  8. E.G. Loewen, M.C. Shaw, On the Analysis of Cutting Tool Temperatures, Transactions of the ASME 76, 217–231 (1954) [Google Scholar]
  9. D.J. Waldorf, A simplified model for ploughing forces in turning, J. Manufactur. Process. 8, 76–82 (2006) [CrossRef] [Google Scholar]
  10. D. Ulutan, Y.M. Arisoy, T. Özel, L. Mears, Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function, Proc. CIRP 13, 365–370 (2014) [CrossRef] [Google Scholar]
  11. Y.B. Guo, C.R. Liu, Fem analysis of mechanical state on sequentially machined surfaces, Mach. Sci. Technol. 6, 21–41 (2002) [CrossRef] [Google Scholar]
  12. J.C. Outeiro, D. Umbrello, R. M'Saoubi, I.S. Jawahir, Evaluation of present numerical models for predicting metal cutting performance and residual stresses, Mach. Sci. Technol. 19, 183–216 (2015) [CrossRef] [Google Scholar]
  13. M. Wan, X.-Y. Ye, D.-Y. Wen, W.H. Zhang, Modeling of machining-induced residual stresses, J. Mater. Sci. 54, 1–35 (2018) [Google Scholar]
  14. S.Y. Liang, J.C. Su, Residual stress modeling in orthogonal machining, CIRP Ann. 56, 65–68 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  15. J.-C. Su, K.A. Young, K. Ma, S. Srivatsa, J.B. Morehouse, S.Y. Liang, Modeling of residual stresses in milling, Int. J. Adv. Manufactur. Technol. 65, 717–733 (2012) [Google Scholar]
  16. H.Z. Li, W.B. Zhang, X.P. Li, Modelling of cutting forces in helical end milling using a predictive machining theory, Int. J. Mech. Sci. 43, 1711–1730 (2001) [CrossRef] [Google Scholar]
  17. M. Wan, X.-Y. Ye, Y. Yang, W.-H. Zhang, Theoretical prediction of machining-induced residual stresses in three-dimensional oblique milling processes, Int. J. Mech. Sci. 133, 426–437 (2017) [CrossRef] [Google Scholar]
  18. X. Huang, X. Zhang, H. Ding, An enhanced analytical model of residual stress for peripheral milling, Proc. CIRP 58, 387–392 (2017) [CrossRef] [Google Scholar]
  19. R.H. Zhou, W.Y. Yang, Analytical modeling of residual stress in helical end milling of nickel-aluminum bronze, Int. J. Adv. Manuf. Tech. 89, 987–996 (2017) [CrossRef] [Google Scholar]
  20. M. Anthony Xavior, M. Manohar, P.M. Madhukar, P. Jeyapandiarajan, Experimental investigation of work hardening, residual stress and microstructure during machining Inconel 718, J. Mech. Sci. Technol. 31, 4789–4794 (2017) [CrossRef] [Google Scholar]
  21. X. Ji, X. Zhang, S.Y. Liang, Predictive modeling of residual stress in minimum quantity lubrication machining, Int. J. Adv. Manufactur. Technol. 70, 2159–2168 (2013) [Google Scholar]
  22. L.R. da Silva, E.C. Bianchi, R.Y. Fusse, R.E. Catai, T.V. França, P.R. Aguiar, Analysis of surface integrity for minimum quantity lubricant—MQL in grinding, Int. J. Mach. Tools Manufact. 47, 412–418 (2007) [CrossRef] [Google Scholar]
  23. Y. Shao, O. Fergani, B. Li, S.Y. Liang, Residual stress modeling in minimum quantity lubrication grinding, Int. J. Adv. Manufactur. Technol. 83, 743–751 (2015) [Google Scholar]
  24. L.T. Tunc, Y. Gu, M.G. Burke, Effects of Minimal Quantity Lubrication (MQL) on surface integrity in robotic milling of austenitic stainless steel, Proc. CIRP 45, 215–218 (2016) [CrossRef] [Google Scholar]
  25. G. de Paula Oliveira, M. Cindra Fonseca, A.C. Araujo, Analysis of residual stress and cutting force in end milling of Inconel 718 using conventional flood cooling and minimum quantity lubrication, Int. J. Adv. Manufactur. Technol. 92, 3265–3272 (2017) [CrossRef] [Google Scholar]
  26. N. Masmiati, A.A.D. Sarhan, M.A.N. Hassan, M. Hamdi, Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel, Measurement 86, 253–265 (2016) [CrossRef] [Google Scholar]
  27. S. Bhowmick, M.J. Lukitsch, A.T. Alpas, Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60), Int. J. Mach. Tool Manu. 50, 752–752 (2010) [CrossRef] [Google Scholar]
  28. R. Viswanathan, S. Ramesh, V. Subburam, Measurement and optimization of performance characteristics in turning of Mg alloy under dry and MQL conditions, Measurement 120, 107–113 (2018) [CrossRef] [Google Scholar]
  29. D. Carou, E.M. Rubio, C.H. Lauro, J.P. Davim, The effect of minimum quantity lubrication in the intermittent turning of magnesium based on vibration signals, Measurement 94, 338–343 (2016) [CrossRef] [Google Scholar]
  30. B. Chirita, Study of residual stresses distribution generated from milling of magnesium alloy parts, Appl. Mech. Mater. 657, 18–22 (2014) [CrossRef] [Google Scholar]
  31. B. Chirita, G. Mustea, G. Brabie, A statistical analysis applied for optimal cooling system selection and for a superior surface quality of machined magnesium alloy parts, Proc. Inst. Mech. Eng. B 229, 392–408 (2014) [Google Scholar]
  32. X. Ji, Zhang, X. Liang, A new approach to predict machining force and temperature with minimum quantity lubrication, in: ASME 2012 International Manufacturing Science and Engineering Conference (2012) 69–76 [CrossRef] [Google Scholar]
  33. Y. Feng, X. Lu Liang, Analytical and Numerical Predictions of Machining-Induced Residual Stress in Milling of Inconel 718 Considering Dynamic Recrystallization (2018) [Google Scholar]
  34. P.L.B. Oxley, The Mechanics of Machining: An Analytical Approach to Assessing Machinability (1989) [Google Scholar]
  35. Y. Chen, H.Z. Li, J. Wang, Further development of oxley's predictive force model for orthogonal cutting, Mach. Sci. Technol. 19, 86–111 (2015) [Google Scholar]
  36. D.J. Waldorf, R.E. DeVor, S.G. Kapoor, A slip-line field for ploughing during orthogonal cutting, J. Manuf. Sci. E 120, 693–699 (1998) [CrossRef] [Google Scholar]
  37. K.L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, 1985 [CrossRef] [Google Scholar]
  38. M.T.A. Saif, C.Y. Hui, A.T. Zehnder, Interface shear stresses induced by non-uniform heating of a film on a substrate, Thin Solid Films 224, 159–167 (1993) [CrossRef] [Google Scholar]
  39. D.L. McDowell, Stress state dependence of cyclic ratchetting behavior of two rail steels, Int. J. Plasticity 11, 397–421 (1963) [Google Scholar]
  40. J.E. Merwin, K.L. Johnson, An analysis of plastic deformation in rolling contact, Proc. Inst. Mech. Eng. B 177, 676–690 (1963) [CrossRef] [Google Scholar]
  41. F. Abbassi, M. Srinivasan, C. Loganathan, R. Narayanasamy, M. Gupta, Experimental and numerical analyses of magnesium alloy hot workability, J. Magnes. Alloy 4, 295–301 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.