Open Access
Issue
Mechanics & Industry
Volume 24, 2023
Article Number 6
Number of page(s) 16
DOI https://doi.org/10.1051/meca/2023004
Published online 21 March 2023
  1. H. Zhang, X. Yan, Q. Hou, Z. Chen, Effect of cyclic cryogenic treatment on wear resistance, impact toughness, and microstructure of 42CrMo steel and its optimization, Adv. Mater. Sci. Eng. 10, 1–13 (2021) [Google Scholar]
  2. F. Qin, H. Qi, C. Liu, H. Qi, Z. Meng, Constitutive characteristics, study on microstructure and properties of 42CrMo bearing ring in cast-rolling forming and subsequent quenching and tempering, Adv. Mater. Sci. Eng. 9, 1–10 (2021) [CrossRef] [Google Scholar]
  3. F. Qin, H. Qi, Y. Liu, X. Wei, Study on microstructure and properties of 42CrMo bearing ring in cast-rolling forming and subsequent quenching and tempering, J. Mech. Eng. 53, 26–33 (2017) [CrossRef] [Google Scholar]
  4. R. Ruiz de la Hermosa González-Carrato, F.P. García Márquez, K. Alexander, M. Papaelias, Methods and tools for the operational reliability optimisation of large-scale industrial wind turbines, in Proceedings of the Ninth International Conference on Management Science and Engineering Management. 362, 1175–1188 (2015) [Google Scholar]
  5. H. Saruhan, S. Saridemir, A. Qicek, I. Uygur, Vibration analysis of rolling element bearings defects, J. Appl. Res. Technol. 12, 384–395 (2014) [CrossRef] [Google Scholar]
  6. B. Gould, A. Greco, The influence of sliding and contact severity on the generation of white etching cracks, Tribol. Lett. 60, 1–13 (2015) [CrossRef] [Google Scholar]
  7. S. Manchoul, R.B. Sghaier, R. Seddik, R. Fathallah, Comparison between conventional shot peening and ultrasonic shot peening, Mech. Ind. 19, 1–8 (2018) [Google Scholar]
  8. R. Kumar, A.K. Sahoo, Pulsating minimum quantity lubrication assisted high speed turning on bio-medical Ti-6Al-4V ELI Alloy: an experimental investigation, Mech. Ind. 21, 1–13 (2020) [Google Scholar]
  9. X. Wang, L. Chen, P. Liu, G. Lin, X. Ren, Enhancement of fatigue endurance limit through ultrasonic surface rolling processing in EA4T axle steel, Metals 10, 1–14 (2020) [Google Scholar]
  10. P. Liu, R. Wang, X. Liu, R. Ren, Effect of surface ultrasonic rolling on evolution of surface microstructure of EA4T Axle Steel, J. Mater. Eng. Perform. 30, 1270–1279 (2021) [CrossRef] [Google Scholar]
  11. Z. Wang, Y. Huang, Z. Xing, H. Wang, D. Shan, F. Xie, J. Li, Bending fatigue behaviour and fatigue endurance limit prediction of 20Cr2Ni4A gear steel after the ultrasonic surface rolling process, Materials 14, 1–25 (2021) [Google Scholar]
  12. S. Qu, X. Hu, F. Lu, F. Lai, H. Liu, Y. Zhang, X. Li, Rolling contact fatigue properties of ultrasonic surface rolling treated 25CrNi2MoV steel under different lubricant viscosities, Int. J. Fatigue 142, 1–12 (2021) [Google Scholar]
  13. J. Geng, Z. Yan, H. Zhang, Y. Liu, P. Dong, S. Yuan, W. Wang, Microstructure and mechanical properties of AZ31B magnesium alloy via ultrasonic surface rolling process, Adv. Eng. Mater. 23, 1–7 (2021) [Google Scholar]
  14. Y. Li, G. Lian, J. Geng, C. Song, D. Chen, H. Wang, Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite, J. Mater. Process. Technol. 293, 1–18 (2021) [Google Scholar]
  15. X. Luo, X. Ren, Q. Jin, H. Qu, H. Hou, Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy, J. Mater. Res. Technol. 131, 586–1598 (2021) [Google Scholar]
  16. Y. Zou, J. Li, X. Liu, T. He, J. Lu, D. Li, Y. Li, Effect of multiple ultrasonic nanocrystal surface modification on surface integrity and wear property of DZ2 axle steel, Surf. Coat. Technol. 412, 1–10 (2021) [Google Scholar]
  17. C. Yao, Z. Zhou, Y. Zhao, L. Tan, M. Cui, Y. Wang, Experimental study on surface integrity changes during turning-ultrasonic impact of nickel alloy 718, Int. J. Adv. Manufactur. Technol. 112, 1359–1371 (2021) [CrossRef] [Google Scholar]
  18. J. Dang, H. Zhang, Q. An, G. Lian, Y. Li, H. Wang, M. Chen, Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process, Surf. Coat. Technol. 421, 1586–1598 (2021) [Google Scholar]
  19. L. Tan, D. Zhang, C. Yao, J. Ren, Effects of ultrasonic surface rolling parameters on surface integrity of TC17 alloy, J. Mater. Eng. Perform. 28, 6736–6745 (2019) [Google Scholar]
  20. X. Wang, X. Liu, G. Yao, D. Yin, Numerical simulation and parameter optimization of surface roughness of ultrasonic rolling extrusion for wind power bearing materials, J. Plast. Eng. 27, 20–26 (2020) [Google Scholar]
  21. G. Xi, Y. Liu, Y. Zhang, Y. Liu, Effect of ultrasonic vibration rolling processing parameters on surface quality of TC4 titanium alloy, J. Plast. Eng. 27, 61–67 (2020) [Google Scholar]
  22. J. Zheng, L. Zhu, Y. Guo, H. Liu, Modeling, simulation, and prediction of surface topography in two-dimensional ultrasonic rolling 7075 Al-alloy, Int. J. Adv. Manufactur. Technol. 113, 309–320 (2021) [CrossRef] [Google Scholar]
  23. H. Xu, Y. Huang, F. Cui, A model for surface residual of ultrasonic rolling extrusion bearing ring, J. Plast. Eng. 25, 205–211 (2018) [Google Scholar]
  24. J. Zheng, S. Jiang, Residual stress field in the process of 2D ultrasonic rolling 7050 aluminum alloy, Surf. Technol. 46, 265–269 (2017) [Google Scholar]
  25. F. Wang, X. Men, Y. Liu, X. Fu, Experiment and simulation study on influence of ultrasonic rolling parameters on residual stress of Ti-6Al-4V alloy, Simul. Modell. Practice Theory. 104, 1–15 (2020) [Google Scholar]
  26. F. Jiao, S.L. Lan, Y. Wang, B. Zhao, Residual stress characteristics and parameters optimization of ultrasonic rolling 12Cr2Ni4A gear steel, Surface Technology. 49, 334–341 (2020) [Google Scholar]
  27. Y. Liu, X. Zhao, D. Wang, Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation, Mater. Sci. Eng. A 600, 21–31 (2014) [CrossRef] [Google Scholar]
  28. C. Liu, D. Liu, X. Zhang, S. Yu, W. Zhao, Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy, Materials. 10, 1–12 (2017) [Google Scholar]
  29. Q. Zhang, Z. Hu, W. Su, H. Zhou, C. Liu, Y. Yang, X. Qi, Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology, Surf. Coat. Technol. 321, 64–73 (2017) [CrossRef] [Google Scholar]
  30. G. Yao, H. Xu, X. Wang, F. Cui, Y. Su, Prediction model of physical and mechanical properties of ultrasonic roller extrusion surface of wind power bearing ring, J. Plast. Eng. 27, 109–116 (2020) [Google Scholar]
  31. W. Frifita, S.B. Salem, A. Haddad, M.A. Yallese, Optimization of machining parameters in turning of Inconel 718 Nickel-base super alloy, Mech. Ind. 21, 1–20 (2020) [Google Scholar]
  32. J. He, C. Li, Y. Lv, J. Li, Structural design optimization of spindle unit of CNC lathes for energy saving, China Mech. Eng. 32, 1330–1340 (2021) [Google Scholar]
  33. H. Li, C. Ma, S. Wang, L. Ma, Load balancing heterogeneous parallel slice algorithm for metal additive manufacturing, China Mech. Eng. 32, 1102–1107 (2021) [Google Scholar]
  34. X. Chen, C. Li, L. Wu, T. Wan, Q. Yang, Integrating optimization of cutter diameter and cutting parameters for energy-aware multi-tool hole machining, J. Mech. Eng. 54, 221–231 (2018) [CrossRef] [Google Scholar]
  35. X. Zhang, C. Liu, B. Zhao, An optimization research on groove textures of a journal bearing using particle swarm optimization algorithm, Mech. Ind. 22, 1–11 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  36. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M. Feidt, M.A. Rosen, Optimal design of an Otto cycle based on thermal criteria, Mech. Ind. 17, 1–8 (2016) [Google Scholar]
  37. X. Gao, Y. Duan, H. Zhao, W. Zhang, Multi-objective optimization of bearing super-precision machining technology based on multi-island genetic algorithm, Mod. Manufactur. Eng. 11, 116–120 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.