Open Access
Issue |
Mechanics & Industry
Volume 24, 2023
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/meca/2022030 | |
Published online | 25 January 2023 |
- B. Wattrisse, J.M. Murracciole, A. Chrysochoos, Thermonmechanical effects accompagnying the localized necking of semi-cryistalline polymers, Int. J. Thermal Sci. 41, 422-427 (2002) [CrossRef] [Google Scholar]
- J.-C. Dupré, F. Lagattu, Thermal and mechanical couplings in plain and wood fibre rein- forced polypropylene during tensile and fracture tests, Polym. Polym. Compos. 15, 453-462 (2007) [Google Scholar]
- C. Rodiet, Temperature measurement by multi-spectral methods and thermal characterization of anisotropic materials by integral transforms: Theoretical and experimental aspects, theses Université de Lorraine; I.N. Polytechnique de Lorraine (2014) [Google Scholar]
- E. El Rassy, Development of Methods to Identify Thermophysical Properties of Complex Media, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers (2019) [Google Scholar]
- V. Delobelle, D. Favier, H. Louche, N. Connesson, Determination of local thermophysical properties and heat of transition from thermal fields measurement during drop calorimetric experiment, Exp. Mech. Soc. Exp. Mech. 55, 711-723 (2015) [CrossRef] [Google Scholar]
- C. Dupont, R. Chiriac, G. Gauthier, F. Toche, Heat capacity measurements of various biomass types and pyrolysis residues, Fuel 115, 644-651 (2014) [CrossRef] [Google Scholar]
- Y. Jannot, B. Remy, A. Degiovanni, Measurement of thermal conductivity and thermal resistance with a Tiny Hot Plate, Exp. High Temperat. High Press. 39 (2010) [Google Scholar]
- M. Rottmann, T. Beikircher, H.-P. Ebert, Thermal conductivity of evacuated expanded perlite measured with guarded-hot-plate and transient-hot-wire method at temperatures between 295 K and 1073 K, Int. J. Thermal Sci. 152, 106338 (2020) [CrossRef] [Google Scholar]
- L. Vozür, W. Hohenauer, Flash method of measuring the thermal diffusivity, High Temperat.-High Press. 35/36, 253-264 (2004) [Google Scholar]
- A. Salazar, A. Mendioroz, E. Apiñaniz, C. Pradere, F. Noël, J.-C. Batsale, Extending the flash method to measure the thermal diffusivity of semitransparent solids, Measur. Sci. Technol. 25, 035604 (2014) [CrossRef] [Google Scholar]
- Y. Jannot, A. Degiovanni, G. Payet, Thermal conductivity measurement of insulating materials with a three layers device, Int. J. Heat Mass Transfer 52, 1105-1111 (2009) [CrossRef] [Google Scholar]
- C. Rodiet, B. Remy, A. Degiovanni, Thermal characterization of anisotropic materials by integral transforms taking into account the thermal coupling with the sample-holder, Int. J. Thermophys. Sci. 79, 67-75 (2014) [CrossRef] [Google Scholar]
- M.S. Mahmood, D. Lesnic, Identification of conductivity in inhomogeneous orthotropic media, Int. J. Numer. Methods Heat Fluid Flow 29, 165-183 (2019) [CrossRef] [Google Scholar]
- E. Ruffio, D. Saury, D. Petit, Robust experiment design for the estimation of thermophysical parameters using stochastic algorithms, Int. J. Heat Mass Transfer 55, 2901-2915 (2012) [CrossRef] [Google Scholar]
- E. El Rassy, Y. Billaud, D. Saury, Simultaneous and direct identification of thermophysical properties for orthotropic materials, Measurement 35, 199-212 (2019) [CrossRef] [Google Scholar]
- S.K. Kim, B.S. Jung, H.J. Kim, W.I. Lee, Inverse estimation of thermophysical properties for anisotropic composite, Exp. Thermal Fluid Sci. 27, 697-704 (2003) [CrossRef] [Google Scholar]
- S.A. Kolesnik, A method for the identification of nonlinear components of the thermal conductivity tensor for anisotropic materials, Math. Models Comput. Simul. 6, 480-489 (2012) [Google Scholar]
- V.F. Formalev, S.A. Kolesnik, On inverse coefficient heatconduction problems on reconstruction of nonlinear components of the thermal-conductivity tensor of anisotropic bodies, J. Eng. Phys. Thermophys. 90, 1302-1309 (2017) [CrossRef] [Google Scholar]
- D. Lesnic, K. Cao, M.J. Colaco, Determination of thermal conductivity of inhomogeneous orthotropic materials from temperature measurements, Inverse Probl. Sci. Eng. 27, 1372-1398 (2019) [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Carr, C.J. Wood, Rear-surface integral method for calculating thermal diffusivity: finite pulse time correction and two-layer samples, Int. J. Heat Mass Transfer 144, 118609 (2019) [CrossRef] [Google Scholar]
- N. Tao, X.L. Li, J.G. Sun, Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods, Rev. Sci. Instrum. 88, 064903 (2017) [CrossRef] [PubMed] [Google Scholar]
- C.-C. Ma, S.W. Chang, Analytical exact solutions of heat conduction problems for anisotropic multi-layered media, Int. J. Heat Mass Transfer 47, 1643-1655 (2004) [CrossRef] [Google Scholar]
- E. El Rassy, Y. Billaud, D. Saury, A direct method for the simultaneous characterization of thermal diffusivities of a bi-layer material consisting of a thin coating deposited on a substrate, Appl. Math. Modell. 91 614-631 (2021) [CrossRef] [Google Scholar]
- J. Li, P. Cheng, G.P. Peterson, J.Z. Xu, Rapid transient heat conduction in multilayer materials withpulsed heating boundary, Int. J. Comput. Methodol. 47, 633-652 (2004) [Google Scholar]
- H. Najafi, K.A. Woodbury, J.V. Beck, A filter based solution for inverse heat conduction problems in multi-layer mediums, Int. J. Heat Mass Transfer 83, 710-720 (2015) [CrossRef] [Google Scholar]
- X.-W. Gao, M.-C. He, A new inverse analysis approach for multi-region heat conduction BEM using complex-variabledifferentiation method, Eng. Anal. Boundary Elem. 29, 788-795 (2005) [CrossRef] [Google Scholar]
- K. Atchonouglo, J.-C. Dupré, A. Germaneau, C. Vallée, Numerical identification of the thermal conductivity tensor and the heat capacity per unit volume of an anisotropic material, Mech. Ind. 20, 603 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- A. Logg, K.-A. Mardal, G.N. Welles, Automated Solution of Differential Equations by the finite Element Method. Springer (2012) [CrossRef] [Google Scholar]
- M. Tanaka, T. Matsumoto, Q.F. Yang, A time-stepping boundary element method for transient heat conduction in orthotropic bodies, Appt. Math. Modelling 18, 569-576 (1994) [CrossRef] [Google Scholar]
- A. Loeb, C. Earls, Analysis of heterogeneous computing approaches to simulating heat transfer in heterogeneous material, J. Parallel Distrib. Comput. 133, 1-17 (2019) [CrossRef] [Google Scholar]
- J.-M. Bergheau, R. Fortunier, Simulation numérique des transferts thermiques par elements finis, Lavoisier (2004) [Google Scholar]
- H.P. Langtangen, A. Logg, Solving PDEs in Python, Springer (2016) [CrossRef] [Google Scholar]
- A.G. Chavez Castillo, B. Gaume, Y. Rouizi, O. Quéméner, P. Glouannec, Identification of insulating materials thermal properties by inverse method using reduced order model, Int. J. Heat Mass Transfer 166, 120683 (2021) [CrossRef] [Google Scholar]
- M.M. Mejias, H.R.B. Orlande, M.N. Özisik, Effects of the heating process and body dimensions on the estimation of conductivity components of orthotropic solids, Inverse Probl. Eng. 11, 75-89 (2003) [CrossRef] [Google Scholar]
- B. Sawaf, M.N. Ozisik, An inverse analysis to estimate linearly temperature dependent thermal conductivity components and heat capacity of an orthotropic medium, Int. J. Heat Mass Transfer 38, 3005-3010 (1995) [CrossRef] [Google Scholar]
- H.-L. Lee, W.-J. Chang, W.-L. Chen, Y.-C. Yang, Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions, Energy Convers. Manag. 57, 1-7 (2012) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.