Open Access
Issue |
Mechanics & Industry
Volume 24, 2023
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/meca/2023012 | |
Published online | 17 May 2023 |
- A. Villarino, J. López-Rebollo, N. Antón, Analysis of Mechanical Behavior through Digital Image Correlation and Reliability of Pinus halepensis Mill, Forests 11, 1232 (2020) [CrossRef] [Google Scholar]
- A.F. Ab Ghani, M.B. Ali, S. DharMalingam, J. Mahmud, Digital image correlation (DIC) technique in measuring strain using opensource platform Ncorr, Adv. Res. Appl. Mech. 26, 10–21 (2016) [Google Scholar]
- M. Gróediac, Principe des travaux virtuels et identification, Comp. Rendus Acad. Sci. T. 309, 1–5 (1989) [Google Scholar]
- D. Claire, S. Roux, F. Hild, Identification of thermal conductivities and elastic properties by field analyses, Móecanique Ind. 4, 655–665 (2003) [CrossRef] [Google Scholar]
- P. Ladevez, D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20, 485–509 (1983) [CrossRef] [MathSciNet] [Google Scholar]
- K.T. Kavanagh, R.W. Clough, Finite element applications in the characterization of elastic solids, Int. J. Solids Struct. 7, 11–23 (1971) [CrossRef] [Google Scholar]
- M. Ikehata, Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection, SIAM J. Appl. Math. 50, 1635–1644 (1990) [CrossRef] [MathSciNet] [Google Scholar]
- S. Avril, M. Bonnet, A.S. Bretelle, M. Grediac, F. Hild, et al. Overview of identification methods of mechanical parameters based on full-field measurements, Exp. Mech. 48, 381–402 (2008) [CrossRef] [Google Scholar]
- S. Avril, F. Pierron, General framework for the identification of constitutive parameters from full-field measurements in linear elasticity, Int. J. Solids Struct. 44, 4978–5002 (2007) [CrossRef] [Google Scholar]
- D. Lecompte, A. Smits, H. Sol, J. Vantomme, D.V. Hemelrijck, Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens, Int. J. Solids Struct. 44, 1643–1656 (2007) [CrossRef] [Google Scholar]
- T. Pottier, Identification paramétrique par recalage de modèles éléments finis couplée à des mesures de champs cinématiques et thermiques, Université de Savoie, France, 2010 [Google Scholar]
- A. Maček, J. Urevc, B. Starman, M. Halilovič, Pararameters’ confidence intervals evaluation for heterogeneous strain field specimen designs by using digital image correlation, ESAFORM, MS11 (Optimization & Inverse), DOI: 10.25518/esaform21.2415, 2021 [Google Scholar]
- M.B. Azzouna, P. Feissel, P. Villon, Robust identification of elastic properties using the modified constitutive relation error, Comput. Methods Appl. Mech. Eng. 295, 196–218 (2015) [CrossRef] [Google Scholar]
- F. Pierron, M. Grédiac, Towards material testing 2.0. A review of test design for identification of constitutive parameters from full-field measurements, Strain 57, e12370 (2021) [CrossRef] [Google Scholar]
- A. Marek, F.M. Davis, J.-H. Kim, F. Pierron, Experimental validation of the sensitivity-based virtual fields for identification of anisotropic plasticity models, Exp. Mech. 60, 639–664 (2020) [CrossRef] [Google Scholar]
- E. Florentin, G. Lubineau, Identification of the parameters of an elastic material model using the constitutive equation gap method, Comput. Mech. 46, 521–531 (2010) [CrossRef] [MathSciNet] [Google Scholar]
- L. Crouzeix, J.N. Périé, F. Collombet, B. Douchin, An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material, Composites Part A: Appl. Sci. Manuf. 40, 1732–1740 (2009) [CrossRef] [Google Scholar]
- T.T. Nguyen, J.M. Huntley, I.A. Ashcroft, P.D. Ruiz, F. Pierron, A Fourier-series-based virtual fields method for the identification of 2-D stiffness and traction distributions, Strain 50, 454–468 (2014) [CrossRef] [Google Scholar]
- S. Guchhait, B. Banerjee, Constitutive error based material parameter estimation procedure for hyperelastic material, Comput. Methods Appl. Mech. Eng. 297, 455–475 (2015) [CrossRef] [Google Scholar]
- T. Madani, Y. Monerie, S. Pagano, C. Pelissou, B. Wattrisse, Identification of heterogeneous elastoplastic behaviors using the constitutive equation gap method, Exp. Mech. Soc. Exp. Mech. 58, 919–939 (2018) [CrossRef] [Google Scholar]
- A. Franquet, S. Avril, R.L. Riche, P. Badel, Identification of heterogeneous elastic properties in stenosed arteries: a numerical plane strain study, Comput. Methods Biomech. Biomed. Eng. 15, 49–58 (2012) [CrossRef] [Google Scholar]
- C. Touzeau, B. Magnain, Q. Serra, E. Florentin, Accuracy and robustness analysis of geometric finite element model updating approach for material parameters identification in transient dynamic, Int. J. Comput. Methods 16, 1850084 (2019) [CrossRef] [MathSciNet] [Google Scholar]
- C. Touzeau, B. Magnain, B. Emile, H. Laurent, E. Florentin, Identification in transient dynamics using a geometry-based cost function in finite element model updating method, Finite Elem. Anal. Des. 122, 49–60 (2016) [CrossRef] [MathSciNet] [Google Scholar]
- R. Gras, H. Leclerc, F. Hild, S. Roux, J. Schneider, Identification of a set of macroscopic elastic parameters in a 3D woven composite: uncertainty analysis and regularization, Int. J. Solids Struct. 55, 2–16 (2015) [CrossRef] [Google Scholar]
- L. Petureau, P. Doumalin, F. Bremand, Identification of local elastic parameters in heterogeneous materials using a parallelized FEMU method, Int. J. Appl. Mech. Eng. 24, 140–156 (2019) [CrossRef] [Google Scholar]
- L. Petureau, Stratégie de couplage expérimentation/ modélisation dans les matériaux hétérogènes. Identification de propriétés mécaniques locales, Université de Poitiers, France, 2018 [Google Scholar]
- W. Ogierman, G. Kokot, Analysis of strain field heterogeneity at the microstructure level and inverse identification of composite constituents by means of digital image correlation, Materials 13, 287 (2020) [CrossRef] [PubMed] [Google Scholar]
- T.V. Tran, Identification du comportement des matériaux métalliques au delà de leur limite d’élasticité par la méthode des champs virtuels, Université de technologie de Troyes, France, 2008 [Google Scholar]
- S.A. Goni, S. Mondal, S. Chakraborty, A new gradient based step size controlled inverse eigen sensitivity algorithm for identification of material and boundary parameters of plates, J. Vib. Control 23, 2619–2634 (2015) [Google Scholar]
- M. de Bonnet, A. Frangi, Analyse des solides déformables par la methode des éléments finis, Eur, J. Comput. Mech. 16, 667–668 (2007) [CrossRef] [Google Scholar]
- V. Phunpeng, P.M. Baiz, Mixed finite element formulations for strain-gradient elasticity problems using the FEniCS environment, Finite Elem. Anal. Des. 96, 23–40 (2015) [CrossRef] [MathSciNet] [Google Scholar]
- H.P. Langtangen, A. Logg, Solving PDEs in Python: the FEniCS tutorial I, Springer Nature, 2017 [Google Scholar]
- P. Erik Frandsen, K.J.H.B. Nielsen, O. Tingleff, Unconstrained Optimization, 3rd edn., March 2004 [Google Scholar]
- H.P. Gavin, The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems, Department of Civil and Environmental Engineering Duke University, August 3, 2019 [Google Scholar]
- A. Ranganathan, The Levenberg-Marquardt Algorithm, 8th June 2004 [Google Scholar]
- K. Madsen, H.B. Nielsen, Introduction to Optimization and Data Fitting, August 2010 [Google Scholar]
- K. Madsen, H.B. Nielsen, O. Tingleff, Methods for Non-linear Least Squares Problems, 2nd edn., April 2004 [Google Scholar]
- T. Lauwagie, Vibration based methods for the identification of the elastic properties of layered materials, Katholieke Universitet Leuven, Belgique, 2005 [Google Scholar]
- C. Poletti, M. Balog, T. Schubert, V. Liedtke, C. Edtmaier, Production of titanium matrix composites reinforced with SiC particles, Composites Sci. Technol. 68, 2171–2177 (2008) [CrossRef] [Google Scholar]
- C. Leyens, J. Hausmann, J. Kumpfert, Continuous fiber reinforced titanium matrix composites: fabrication, properties and applications, Adv. Eng. Mater. 5, 399–410 (2003) [CrossRef] [Google Scholar]
- M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, et al., Assessment of digital image correlation measurement errors: methodology and results, Exp. Mech. 49, 353–370 (2009) [CrossRef] [Google Scholar]
- M. Bornert, P. Doumalin, J.-C. Dupré, C. Poilâne, L. Robert, E. Toussaint, B. Wattrisse, Assessment of digital image correlation measurement accuracy in the ultimate error regime: improved models of systematic and random errors, Exp. Mech. 58, 33–48 (2018) [CrossRef] [Google Scholar]
- F. Pierron, B. Guo, R. Rotinat, Méthodologie d’identification du comportement mécanique des mousses hyperélastiques par mesures de champs et méthode inverse, Mécanique & Ind. 10, 55–59 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
- D. Ramirez-Tamayo, A. Soulami, V. Gupta, D. Restrepo, A. Montoya, E. Nickerson, T. Roosendaal, K. Simmons, G. Petrossian, H. Millwater, A complex-variable finite element method-based inverse methodology to extract constitutive parameters using experimental data, Int. J. Solids Struct. 243, 111545 (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.