Open Access
Issue
Mechanics & Industry
Volume 24, 2023
Article Number 16
Number of page(s) 20
DOI https://doi.org/10.1051/meca/2023013
Published online 05 May 2023
  1. The European Parliament and the Council of the European Union, Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’) (09.07.2021) [Google Scholar]
  2. The European Parliament and the Council of the European Union, Regulation (EU) 2019 /631 of the European Parliament and of the Council of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011 (25.04.2019) [Google Scholar]
  3. H.E. Friedrich, S.K. Krishnamoorthy, Leichtbau als Treiber von Innovationen, Leichtbau in der Fahrzeugtechnik, Wiesbaden, Springer Fachmedien Wiesbaden, 1–31 (2017) [Google Scholar]
  4. J. Wang, Y. Li, G. Hu, M. Yang, Lightweight research in engineering: a review, Appl. Sci. 9, 5322 (2019) [CrossRef] [Google Scholar]
  5. B. Bader, J. Altach, E. Türck, T. Vietor, Approach for assessment of suitable automotive component ranges for the application of multi material design, Proc. CIRP 91, 188–93 (2020) [CrossRef] [Google Scholar]
  6. G. Meschut, O. Hahn, V. Janzen, T. Olfermann, Innovative joining technologies for multi-material structures, Weld World 58, 65–75 (2014) [CrossRef] [Google Scholar]
  7. H.Q. Ang, An overview of self-piercing riveting process with focus on joint failures, corrosion issues and optimisation techniques, Chin. J. Mech. Eng. 34, 903 (2021) [Google Scholar]
  8. G. Meschut, M. Gude, F. Augenthaler, V. Geske, Evaluation of damage to carbon-fibre composites induced by self-pierce riveting, Proc. CIRP 18, 186–91 (2014) [CrossRef] [Google Scholar]
  9. G. Meschut, M. Merklein, A. Brosius, D. Drummer, L. Fratini, U. Füssel et al., Review on mechanical joining by plastic deformation, J. Adv. Joining Process. 504–506, 100113 (2022) [CrossRef] [Google Scholar]
  10. D. Römisch, M. Kraus, M. Merklein, Investigation of the influence of formed, non-rotationally symmetrical pin geometries and their effect on the joint quality of steel and aluminium sheets by direct pin pressing, Proc. Inst. Mech. Eng. Part L 236, 1187–1202 (2022) [Google Scholar]
  11. L.F.M. da Silva, A. Öchsner, R.D. Adams, Handbook of Adhesion Technology, Springer International Publishing, Cham (2018) [CrossRef] [Google Scholar]
  12. P.N. Parkes, R. Butler, J. Meyer, A. de Oliveira, Static strength of metal-composite joints with penetrative reinforcement, Compos. Struct. 118, 250–256 (2014) [CrossRef] [Google Scholar]
  13. D.P. Graham, A. Rezai, D. Baker, P.A. Smith, J.F. Watts, The development and scalability of a high strength, damage tolerant, hybrid joining scheme for composite-metal structures, Compos. Part A 64, 11–24 (2014) [CrossRef] [Google Scholar]
  14. S.A. Ucsnik, G. Kirov, New possibility for the connection of metal sheets and fiber reinforced plastics, MSF 690, 465–8 (2011) [CrossRef] [Google Scholar]
  15. E.E. Feistauer, J.F. dos Santos, S.T. Amancio-Filho, An investigation of the ultrasonic joining process parameters effect on the mechanical properties of metal-composite hybrid joints, Weld World 64, 1481–1495 (2020) [CrossRef] [Google Scholar]
  16. V. Di Giandomenico, Surface structured bonded composite-metal joint (2014) [Google Scholar]
  17. X. Wang, J. Ahn, J. Lee, B.R.K. Blackman, Investigation on failure modes and mechanical properties of CFRP-Ti6Al4V hybrid joints with different interface patterns using digital image correlation, Mater. Des. 101, 188–196 (2016) [CrossRef] [Google Scholar]
  18. M. Kraus, P. Frey, T. Kleffel, D. Drummer, M. Merklein, Mechanical joining without auxiliary element by cold formed pins for multi-material-systems, AIP Conf. Proc. 2113 (2019) [Google Scholar]
  19. E. Ghassemali, M.J. Tan, A. Jarfors, S. Lim, Progressive microforming process: towards the mass production of micro-parts using sheet metal, Int. J. Adv. Manufactur. Technol. 66 (2012) [Google Scholar]
  20. K. Hirota, Fabrication of micro-billet by sheet extrusion, J. Mater. Process. Technol. 191, 283–7 (2007) [CrossRef] [Google Scholar]
  21. J. Popp, T. Kleffel, D. Römisch, T. Papke, M. Merklein, D. Drummer, Fiber orientation mechanism of continuous fiber reinforced thermoplastics hybrid parts joined with metallic pins, Appl. Compos. Mater. 27, 477 (2021) [Google Scholar]
  22. J. Popp, T. Kleffel, D. Drummer, Influence of pin geometry on the joint strength of CFRT-metal hybrid parts with metallic pins, Join. Plast. Fügen Kunstst 3, 177–83 (2021) [Google Scholar]
  23. J. Popp, D. Drummer, Joining of continuous fiber reinforced thermoplastic/steel hybrid parts via undercutting pin structures and infrared heating, J. Adv. Join. Process 5, 100084 (2022) [CrossRef] [Google Scholar]
  24. J. Popp, D. Römisch, M. Merklein, D. Drummer, Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures (2022) [Google Scholar]
  25. D. Römisch, J. Popp, D. Drummer, M. Merklein, Joining of CFRT-steel hybrid parts via hole-forming and subsequent pin caulking, Production Engineering (2021) [Google Scholar]
  26. D. Römisch, M. Merklein, Experimental and Numerical Analysis of Cold Formed Multi Pin Structures Using a Multi-Acting Tool Design, 12th Tooling Conference and Exhibition − Tooling 2022, April, Örebro, 507–514 (2022) [Google Scholar]
  27. D. Römisch, M. Kraus, M. Merklein, Experimental Study on Joining by Forming of HCT590X + Z and EN-AW 6014 Sheets Using Cold Extruded Pin Structures, JMMP 5, 25 (2021) [CrossRef] [Google Scholar]
  28. D. Römisch, C. Zirngibl, B. Schleich, S. Wartzack, M. Merklein, Data-driven analysis of cold-formed pin structure characteristics in the context of versatile joining processes, IOP Conf. Ser.: Mater. Sci. Eng. 1157, 12077 (2021) [Google Scholar]
  29. D. Römisch, C. Zirngibl, B. Schleich, S. Wartzack, M. Merklein, Robustness analysis of pin joining, JMMP 6, 122 (2022) [CrossRef] [Google Scholar]
  30. D. Römisch, A. Hetzel, S. Wituschek, M. Lechner, M. Merklein, Pin extrusion for mechanical joining from orbital formed tailored blanks with local material pre-distribution, JMMP 6, 127 (2022) [CrossRef] [Google Scholar]
  31. S. Busse, M. Merklein, K. Roll, M. Ruther, M. Zürn, Development of a mechanical joining process for automotive body-in-white production, Int. J. Mater. Form 3, 1059–62 (2010) [CrossRef] [Google Scholar]
  32. S. Busse, Entwicklung und Qualifizierung des Schneidclinchverfahrens [Dissertation]. Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universität Erlangen-Nürnberg (2013) [Google Scholar]
  33. M. Graser, S. Wiesenmayer, M. Müller, M. Merklein, Application of tailor heat treated blanks technology in a joining by forming process, J. Mater. Process. Technol. 264, 259–72 (2019) [CrossRef] [Google Scholar]
  34. A. Weikelmann, Weiterentwicklung des Schneidclinchens in Kombination mit dem Kleben für Leichtbaustrukturen in Mischbauweise [Dissertation] Paderborn: Universität Paderborn (2017) [Google Scholar]
  35. S. Wiesenmayer, M. Merklein, Investigation of the joinability of the high-strength aluminum alloy AA7075 in shear-clinching processes, Proc. IMechE 146442072110679 (2021) [Google Scholar]
  36. O. Hahn, Y. Tan, M. Schroeder, M. Horstmann, Thermally supported mechanical joining of magnesium components, MSF 488–489, 365–70 (2005) [CrossRef] [Google Scholar]
  37. F. Lambiase, Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions, J. Mater. Process. Technol. 225, 421–32 (2015) [CrossRef] [Google Scholar]
  38. M. Jäckel, T. Grimm, D. Landgrebe, Approaches for mechanical joining of 7xxx series aluminum alloys, in ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming, 27–29 April 2016, Nantes, France, Author(s), 100010 (2016) [Google Scholar]
  39. G. Meschut, V. Janzen, T. Olfermann, Innovative and highly productive joining technologies for multi-material lightweight car body structures, J. Mater. Eng. Perform 23, 1515–23 (2014) [CrossRef] [Google Scholar]
  40. F. Ostermann, Anwendungstechnologie Aluminium, 3rd ed. (Springer Vieweg, Berlin 2014) [CrossRef] [Google Scholar]
  41. H.-H. Kiethe, Das Festigkeits- und Umformverhalten von AlZnMg1 nach verschiedenen Wärmebehandlungen unter besonderer Berücksichtigung der Rückbildung [Dissertation]. TU Berlin, Berlin (1983) [Google Scholar]
  42. M. Jäckel, T. Grimm, T. Falk, Process development for mechanical joining of 7xxx series aluminum alloys: European Aluminium Congress 2017 Düsseldorf 28.11.2017 (2017) [Google Scholar]
  43. M. Jäckel, Mechanisches Fügen 7000er Aluminiumlegierungen. Hannover: Europäische Forschungsgesellschaft für Blechverarbeitung e.V (2018) [Google Scholar]
  44. S. Wiesenmayer, M. Merklein, Shear-clinching of the high-strength aluminum alloy AA7075 with laser-assisted retrogression, Proc. Inst. Mech. Eng. B 4, 095440542211351 (2022) [CrossRef] [Google Scholar]
  45. M. Nicolas, A. Deschamps, Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments, Acta Mater. 51, 6077–6094 (2003) [CrossRef] [Google Scholar]
  46. M. Weiss, Ermittlung funktioneller Zusammenhänge beim Fügen von Stanzmuttern und Blechhalbzeugen. Erlangen: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2019) [Google Scholar]
  47. RIBE® Verbindungstechnik GmbH & Co. KG, RIBE® fastening systems − Product portfolio. Available from https://www.ribe.de/en/verbindungstechnik/produktspektrum (accessed 27 September 2021) [Google Scholar]
  48. F. Blaha, B. Langenecker, Dehnung von Zink-Kristallen unter Ultraschalleinwirkung, Naturwissenschaften 42, 556 (1955) [CrossRef] [Google Scholar]
  49. O. Izumi, K. Oyama, Y. Suzuki, Effects of superimposed ultrasonic vibration on compressive deformation of metals, Trans. JIM 7, 162–167 (1966) [CrossRef] [Google Scholar]
  50. M.S. Nerubai, Effect of ultrasonic vibrations on the mechanical properties of difficult-to-deform materials, Met. Sci. Heat Treat 29, 254–258 (1987) [CrossRef] [Google Scholar]
  51. E. Lehfeld. Wire drawing with superimposed ultrasonic vibrations, Wire 102, 205–13 (1969) [Google Scholar]
  52. T. Jimma, Y. Kasuga, N. Iwaki, O. Miyazawa, E. Mori, K. Ito, H. Hatano, An application of ultrasonic vibration to the deep drawing process, J. Mater. Process. Technol. 80–81, 406–412 (1998) [CrossRef] [Google Scholar]
  53. S.A.A.A. Mousavi, H. Feizi, R. Madoliat, Investigations on the effects of ultrasonic vibrations in the extrusion process, J. Mater. Process. Technol. 187-188, 657–661 (2007) [CrossRef] [Google Scholar]
  54. G. Shao, H. Li, M. Zhan, A review on ultrasonic-assisted forming: mechanism, model, and process, Chin. J. Mech. Eng. (English Edition) 34, 1 (2021) [CrossRef] [Google Scholar]
  55. M.-C. Wanner, K.-M. Henkel, B. Becker, V. Thoms, M. Timm, Clinchen von Stahl- und Aluminiumwerkstoffen unter Einwirkung von Leistungsultraschall [Google Scholar]
  56. F. Heßeln, M.C. Wanner, Ultrasonic assisted clinching of aluminium alloy sheets, AMR 966–967, 641–650 (2014) [Google Scholar]
  57. G. Nanaumi, D. Mizushima, N. Ohtake, Joining of various kinds of metal plates using ultrasonic vibrations, Proc. Eng. 81, 2111–2116 (2014) [CrossRef] [Google Scholar]
  58. C.C. Libby, Sonic riveting of aircraft aluminum alloys, IEEE Trans. Son. Ultrason. 16, 117–125 (1969) [CrossRef] [Google Scholar]
  59. X. Wang, Z. Qi, W. Chen, Y. Xiao, Study on the effects of transverse ultrasonic vibration on deformation mechanism and mechanical properties of riveted lap joints, Ultrasonics 116, 106452 (2021) [CrossRef] [PubMed] [Google Scholar]
  60. M. Jäckisch, M. Merklein, A novel ultrasonic-assisted staking process for mechanical fasteners, Proc. IMechE 236, 1176–1186 (2022) [CrossRef] [Google Scholar]
  61. U. Leicht, M. Merklein, S. Engler, Ultrasonic-assisted metal staking with 15 kHz oscillation frequency, KEM 716, 536–543 (2016) [CrossRef] [Google Scholar]
  62. M. Jäckisch, M. Merklein, Influence of Ultrasonic Assistance on the Forming Limits of Steel, Forming the Future (Springer International Publishing, Cham, 2021), pp. 1281–1290 [Google Scholar]
  63. D. Li, A. Chrysanthou, I. Patel, G. Williams, Self-piercing riveting − a review, Int. J. Adv. Manuf. Technol. 92, 1777–1824 (2017) [CrossRef] [Google Scholar]
  64. Y. Abe, T. Kato, K. Mori, Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die, J. Mater. Process. Technol. 209, 3914–3922 (2009) [CrossRef] [Google Scholar]
  65. DVS/EFB, Self-pierce Riveting - Overview: Sonderverfahren 2019 [Google Scholar]
  66. L. Han, A. Chrysanthou, K.W. Young, Mechanical behaviour of self-piercing riveted multi-layer joints under different specimen configurations, Mater. Des. 28, 2024–2033 (2007) [CrossRef] [Google Scholar]
  67. F. Kappe, L. Schadow, M. Bobbert, G. Meschut, Increasing flexibility of self-piercing riveting by reducing tool-geometry combinations using cluster analysis in the application of multi-material design, Proc. Inst. Mech. Eng. L 146442072110709 (2022) [Google Scholar]
  68. S. Wituschek, F. Kappe, M. Lechner, Investigation of the influence of varying tumbling strategies on a tumbling self-piercing riveting process, Prod. Eng. Res. Devel. 16, 353–362 (2022) [CrossRef] [Google Scholar]
  69. S. Wituschek, M. Lechner, Investigation of the influence of the tumbling angle on a tumbling self-piercing riveting process, Proc. Inst. Mech. Eng. L 236, 1302–1309 (2022) [Google Scholar]
  70. S. Wituschek, M. Lechner, Versatile tool design for a tumbling self-piercing riveting proces, 12th Tooling Conference and Exhibition − Tooling 2022, April, Örebro, 499–506 (2022) [Google Scholar]
  71. S. Wituschek, F. Kappe, G. Meschut, M. Lechner, Geometric and mechanical joint characterization of conventionally and tumbled self-piercing riveting joints, Proc. Inst. Mech. Eng. L 146442072211354 (2022) [Google Scholar]
  72. DVS/EFB, Prüfung von Verbindungeigenschaften: Prüfung der Eigenschaften mechanisch und kombiniert mittels Kleben gefertigter Verbindungen 2021. 1st ed [Google Scholar]
  73. P. Furrer, A. Müller, T. Reier, S. Mütze, U. Eggers, A. Geffert et al., Werkstoff- und Halbzeugtechnologien für Leichtbau-Anwendungen, Leichtbau in der Fahrzeugtechnik, Wiesbaden, Springer Fachmedien Wiesbaden (2017), pp. 451–732 [CrossRef] [Google Scholar]
  74. K. Mori, Assessing the suitability of materials for self-piercing riveting (SPR), Self-Piercing Riveting (Elsevier, 2014), pp. 111–123 [Google Scholar]
  75. B. Uhe, C.-M. Kuball, M. Merklein, G. Meschut, Improvement of a rivet geometry for the self-piercing riveting of high-strength steel and multi-material joints, Prod. Eng. Res. Devel. 14, 417–423 (2020) [CrossRef] [Google Scholar]
  76. M.W. Danyo, Self-piercing riveting (SPR) in the automotive industry: an overview, Self-Piercing Riveting (Elsevier, 2014), pp. 171–180 [Google Scholar]
  77. I. Mendikoa, M. Sorli, A. Armijo, L. Garcia, L. Erausquin, M. Insunza et al., Energy Efficiency Optimisation in Heat Treatment Process Design, Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services (Springer, Berlin, Heidelberg, Berlin, Heidelberg, 2013), pp. 127–134 [Google Scholar]
  78. J. Mucha, A Study of Quality Parameters and Behaviour of Self-Piercing Riveted Aluminium Sheets with Different Joining Conditions, SV-JME 57 04, 323–33 (2011) [CrossRef] [Google Scholar]
  79. O. Hahn, W. Flügge, A. Schulz Beenken, J. Schulte, S. Schuberth, F.-J. Heise, Entwicklung von Verfahren zum Stanznieten nichtrostender hochlegierter Stähle mit nichtrostenden Nieten. Abschlussbericht FOSTA-Projekt P401. Düsseldorf: Verl. u. Vertriebsges. mbH (2009) [Google Scholar]
  80. A. Schulz-Beenken, L. Budde, DE 44 31 769 C2 − Stanzniet aus rostfreiem Stahl (2002) [Google Scholar]
  81. K. Mori, T. Kato, Y. Abe, Y. Ravshanbek, Plastic joining of ultra high strength steel and aluminium alloy sheets by self piercing rivet, CIRP Ann. 55, 283–286 (2006) [CrossRef] [Google Scholar]
  82. K.-i. Mori, Y. Abe, A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation, Int. J. Lightweight Mater. Manuf. 1, 1–11 (2018) [Google Scholar]
  83. K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials, CIRP Ann. 64, 679–699 (2015) [CrossRef] [Google Scholar]
  84. S.N. van Hall, K.O. Findley, A.M. Campbell, Evaluating the performance of current self-pierce rivet technology for the joining of high strength steel and aluminum alloys, in ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference, 09.06. 2014–13. 06.2014, Detroit, Mi chigan, USA, American Society of Mechanical Engineers (06092014) [Google Scholar]
  85. V.G. Gavriljuk, High nitrogen steels. Nitrogen in iron and steel, ISIJ Int. 36, 738–745 (1996) [Google Scholar]
  86. G. Stein, I. Hucklenbroich, M. Wagner, P 2000-a New Austenitic High Nitrogen Steel for Power Generating Equipment, MSF 318-320, 167–174 (1999) [CrossRef] [Google Scholar]
  87. V.G. Gavriljuk, H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications (Springer, Berlin, Heidelberg, 1999) [CrossRef] [Google Scholar]
  88. H. Noneder, M. Merklein, Manufacturing of complex high strength components out of high nitrogen steels at industrial level, Trans. Nonferrous Metals Soc. China 22, s512–s518 (2012) [CrossRef] [Google Scholar]
  89. C.-M. Kuball, B. Uhe, G. Meschut, M. Merklein, Process design for the forming of semi-tubular self-piercing rivets made of high nitrogen steel, Proc. Manufactur. 50, 280–285 (2020) [CrossRef] [Google Scholar]
  90. C.-M. Kuball, B. Uhe, G. Meschut, M. Merklein, Process-adapted temperature application within a two-stage rivet forming process for high nitrogen steel, Proc. Inst. Mech. Eng. L 236, 1285–1301 (2022) [CrossRef] [Google Scholar]
  91. C.-M. Kuball, R. Jung, B. Uhe, G. Meschut, M. Merklein, Influence of the process temperature on the forming behaviour and the friction during bulk forming of high nitrogen steel, J. Adv. Joining Processes 1, 100023 (2020) [CrossRef] [Google Scholar]
  92. M.AE. Harzenmoser, Massiv aufgestickte austenitisch-rostfreie Stähle und Duplexstähle: ETH Zurich (1990) [Google Scholar]
  93. B. Uhe, C.-M. Kuball, M. Merklein, G. Meschut, Self-Piercing Riveting Using Rivets Made of Stainless Steel with High Strain Hardening, Forming the Future (Springer International Publishing, Cham, 2021), pp. 1495–1506 [Google Scholar]
  94. S. Purr, Datenerfassung für die Anwendung lernender Algorithmen bei der Herstellung von Blechformteilen (FAU University Press, Erlangen, 2020) [Google Scholar]
  95. J. Havinga, P.K. Mandal, T. van den Boogaard, Product-to-product estimation for metal forming mass production, Forming Technology Forum, 12. and 13. October, Enschede, Netherlands (2017) [Google Scholar]
  96. J. Heingärtner, D. Bonfanti, D. Harsch, F. Dietrich, P. Hora, Implementation of a tribology-based process control system for deep drawing processes, IOP Conf. Ser.: Mater. Sci. Eng. 418, 12112 (2018) [Google Scholar]
  97. M. Jäckel, T. Falk, D. Landgrebe, Concept for further development of self-pierce riveting by using cyber physical systems, Proc. CIRP 44, 293–297 (2016) [CrossRef] [Google Scholar]
  98. P. Heyser, S. Wiesenmayer, P. Frey, T. Nehls, C. Scharr, W. Flügge et al., Consideration of the manufacturing history of sheet metal components for the adaptation of a clinching process, Proc. Inst. Mech. Eng. L 236, 1203–1215 (2022) [Google Scholar]
  99. S. Wiesenmayer, P. Frey, M. Lechner, M. Merklein, Determination of the properties of semi-finished parts in blanking processes, IOP Conf. Ser.: Mater. Sci. Eng. 967, 12009 (2020) [Google Scholar]
  100. S. Wiesenmayer, P. Heyser, T. Nehls, P. Frey, W. Flügge, G. Meschut, M. Merklein, Vernetzte Fertigung/Connected manufacturing − considering the manufacturing history of sheet metal components when joining by forming, wt 110, 677–683 (2020) [Google Scholar]
  101. M. Jäckel, T. Falk, J. Georgi, W.-G. Drossel, Gathering of process data through numerical simulation for the application of machine learning prognosis algorithms, Proc. Manufactur. 47, 608–614 (2020) [CrossRef] [Google Scholar]
  102. M. Götz, F. Leichsenring, T. Kropp, P. Müller, T. Falk, W. Graf et al., Data mining and machine learning methods applied to a numerical clinching model, CMES 117, 387–423 (2018) [CrossRef] [Google Scholar]
  103. M. Jäckel, Potentials of Industrie 4.0 and Machine Learning for Mechanical Joining. Presented at Joining in Car Body Engineering 2017, Bad Nauheim (2017) [Google Scholar]
  104. A. Nemati, M. Jäckel, S.F. Bocklisch, W.-G. Drossel, Fuzzy pattern modeling of self-pierce riveting for data from experiments and computer simulations, Int. J. Adv. Manuf. Technol. 122, 2203–2216 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.