Issue
Mechanics & Industry
Volume 24, 2023
History of matter: from its raw state to its end of life
Article Number 25
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2023023
Published online 08 August 2023
  1. K. De Weerdt, H. Justnes, M.R. Geiker, Changes in the phase assemblage of concrete exposed to sea water, Cement Concrete Composites 47, 53–63 (2014) [CrossRef] [Google Scholar]
  2. E. Guillon, Durabilité des matériaux cimentaires: modélisation de l'influence des équilibres physico-chimiques sur la microstructure et les propriétés mécaniques résiduelles, École Normale Supérieure de Cachan, 2004 [Google Scholar]
  3. R. Ragoug et al., Durability of cement pastes exposed to external sulfate attack and leaching: physical and chemical aspects, Cement Concrete Res. 116, 134–145 (2019) [CrossRef] [Google Scholar]
  4. M. Zhang, J. Chen, Y. Lv, D. Wang, J. Ye, Study on the expansion of concrete under attack of sulfate and sulfate − chloride ions, Constr. Build. Mater, 39, 26–32 (2013) [CrossRef] [Google Scholar]
  5. M. Santhanam, M. Cohen, J. Olek, Differentiating seawater and groundwater sulfate attack in Portland cement mortars, Cement Concrete Res. 36, 2132–2137 (2006) [CrossRef] [Google Scholar]
  6. M. El-Khoury, F. Grondin, E. Rozière, R. Cortas, F. Hage Chehade, Chemo-mechanical coupling model of off-shore concrete structures, Acad. J. Civil Eng. 39, 39–42 (2021) [Google Scholar]
  7. M. El-Khoury, E. Roziere, F. Grondin, R. Cortas, F. Hage Chehade, Experimental evaluation of the effect of cement type and seawater salinity on concrete offshore structures, Constr. Build. Mater. 322, 126471 (2022) [CrossRef] [Google Scholar]
  8. D. Kuhl, F. Bangert, G. Meschke, Coupled chemo-mechanical deterioration of cementitious materials. Part I. Modeling, Int. J. Solids Struct. 41, 15–40 (2004) [CrossRef] [Google Scholar]
  9. D. Kuhl, F. Bangert, G. Meschke, Coupled chemo-mechanical deterioration of cementitious materials. Part II. Numerical methods and simulations, Int. J. Solids Struct. 41, 41–67 (2004) [CrossRef] [Google Scholar]
  10. V.H. Nguyen, B. Nedjar, J.M. Torrenti, Chemo-mechanical coupling behaviour of leached concrete. Part II. Modelling, Nuclear Eng. Des. 237, 2090–2097 (2007) [CrossRef] [Google Scholar]
  11. V.H. Nguyen, H. Colina, J.M. Torrenti, C. Boulay, B. Nedjar, Chemo-mechanical coupling behaviour of leached concrete. Part I. Experimental results, Nuclear Eng. Des. 237, 2083–2089 (2007) [CrossRef] [Google Scholar]
  12. L. Lacarrière, A. Sellier, X. Bourbon, Concrete mechanical behaviour and calcium leaching weak coupling, Rev. Eur. Génie Civil 10, 1147–1175 (2006) [Google Scholar]
  13. J.M. Torrenti, V.H. Nguyen, H. Colina, F. Le Maou, F. Benboudjema, F. Deleruyelle, Coupling between leaching and creep of concrete, Cement Concrete Res. 38, 816–821 (2008) [CrossRef] [Google Scholar]
  14. O. Bernard, F.J. Ulm, J.T. Germaine, Volume and deviator creep of calcium-leached cement-based materials, Cement Concrete Res. 33, 1127–1136 (2003) [CrossRef] [Google Scholar]
  15. B. Hilloulin, D. Hilloulin, F. Grondin, A. Loukili, N. De Belie, Mechanical regains due to self-healing in cementitious materials: experimental measurements and micro-mechanical model, Cement Concrete Res. 80, 21–32 (2016) [CrossRef] [Google Scholar]
  16. D.P. Bentz, A three-dimensional cement hydration and microstructure program. I. Hydration rate, heat of hydration, and chemical shrinkage, NISTIR 5756 (1995) [Google Scholar]
  17. S. Fichant, C. La Borderie, G. Pijaudier-cabot, Isotropic and anisotropic descriptions of damage in concrete structures, Mech. Cohesive Frictional Mater. 4, 339–359 (1999) [CrossRef] [Google Scholar]
  18. S. Fichant, G. Pijaudier-cabot, C. La Borderie, Continuum damage modelling: approximation of crack induced anisotropy, Mech. Res. Commun. 24, 109–114 (1997) [CrossRef] [Google Scholar]
  19. A. Rhardane, S.Y. Alam, F. Grondin, The role of surface micro-cracks in cementitious materials responsible for the Pickett effect, Mech. Time-Depend. Mater. (2021), doi: 10.1007/s11043-021-09509-w [Google Scholar]
  20. C. Youssef Namnoum, B. Hilloulin, F. Grondin, A. Loukili, Modelling of creep effect on a healed crack in cementitious materials, in: 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-X., 2019, pp. 1–7 [Google Scholar]
  21. A. Rhardane, Élaboration d'une approche micromécanique pour modéliser l'endommagement des matériaux cimentaires sous fluage et cycles de gel-dégel, Ecole Centrale de Nantes, 2018. [Google Scholar]
  22. M. El-khoury, F. Grondin, B. Hilloulin, E. Roziere, R. Cortas, F.H. Chehade, Creep analysis of cementitious materials in seawater using a poro-chemo-mechanical model, Mar. Struct. J. 90 (2023), doi: 10.1016/j.marstruc.2023.103431 [CrossRef] [Google Scholar]
  23. A. Rhardane, F. Grondin, S.Y. Alam, Development of a micro-mechanical model for the determination of damage properties of cement pastes, Constr. Build. Mater. 261, 120514 (2020) [CrossRef] [Google Scholar]
  24. M. Eglinton, Resistance of concrete to destructive agencies, in: P.C. Hewlett (Ed.), Lea's Chemistry of Cement and Concrete − Fourth Edition, Elsevier Ltd. 1998, pp. 299–342 [CrossRef] [Google Scholar]
  25. M. Santhanam, M.D. Cohen, J. Olek, Effects of gypsum formation on the performance of cement mortars during external sulfate attack, Cement Concrete Res. 33, 325–332 (2003) [CrossRef] [Google Scholar]
  26. F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The composition of standard seawater and the definition of the reference-composition salinity scale, Deep-Sea Res. Part I: Oceanogr. Res. Pap. 55, 50–72 (2008) [Google Scholar]
  27. A. Gauthier, Approche expérimentale et modélisation de la lixiviation des ouvrages de traitement d ' eau potable en béton exposés à des eaux agressives, Ecole Centrale de Nantes, 2020 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.