Mechanics & Industry
Volume 24, 2023
History of matter: from its raw state to its end of life
Article Number 33
Number of page(s) 9
Published online 12 September 2023
  1. S.I. Ranganathan, M. Ostoja-Starzewski, Scaling function, anisotropy and the size of RVE in elastic random polycrystals, J. Mech. Phys. Solids. 56, 2773–2791 (2008) [CrossRef] [MathSciNet] [Google Scholar]
  2. T. Böhlke, K. Jöchen, O. Kraft, D. Löhe, V. Schulze, Elastic properties of polycrystalline microcomponents, Mech. Mater. 42, 11–23 (2010) [CrossRef] [Google Scholar]
  3. M. Norouzian, J.A. Turner, Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Phase velocity variations, J. Acoust. Soc. Am. 145, 2171–2180 (2019) [Google Scholar]
  4. S.I. Wright, B.L. Adams, K. Kunze, Application of a new automatic lattice orientation measurement technique to polycrystalline aluminum, Mater. Sci. Eng. A. 160(2), 229–240 (1993) [CrossRef] [Google Scholar]
  5. X. Gao, C.P. Przybyla, B.L. Adams, Methodologies for recovering and analyzing two-point pair correlation function in polycrystalline materials, Metall. Mater. Trans. A. 37A, 2379–2387 (2006) [CrossRef] [Google Scholar]
  6. A. Noshadravan, R. Ghanem, J. Guilleminot, I. Atodaria, P. Peralta, Validation of a probabilistic model for mesoscale elasticity tensor of random polycrystals, Int. J. Uncertain. Quantif. 3 (2013) [Google Scholar]
  7. R. Quey, P. Dawson, F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011) [CrossRef] [Google Scholar]
  8. F. Rhines, B. Patterson, Effect of the degree of prior cold work on the grain volume distribution and the rate of grain growth of recrystallized aluminum, Metall. Mater. Trans. A. 13, 985–993 (1982) [CrossRef] [Google Scholar]
  9. S. Berbenni, V. Favier, M. Berveiller, Impact of the grain size distribution on the yield stress of heterogeneous materials, Int. J. Plast. 23, 114–142 (2007) [CrossRef] [Google Scholar]
  10. P.-A. Dubos, E. Hug, S. Thibault, M. Ben Bettaieb, C. Keller, Size effects in thin face-centered cubic metals for different complex forming loadings, Metall. Mater. Trans. A. 44, 5478–5487 (2013) [CrossRef] [Google Scholar]
  11. M. Ardeljan, R.J. McCabe, I.J. Beyerlein, M. Knezevic, Explicit incorporation of deformation twins into crystal plasticity finite element models, Comput. Methods Appl. Mech. Eng. 295, 396–413 (2015) [CrossRef] [Google Scholar]
  12. M. Knezevic, B. Drach, M. Ardeljan, I.J. Beyerlein, Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models, Comput. Methods Appl. Mech. Eng. 277, 239–259 (2014) [CrossRef] [Google Scholar]
  13. H. Bunge, Texture Analysis in Materials Science: Mathematical Methods. Elsevier, 2013 [Google Scholar]
  14. S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22, 79–86 (1951) [CrossRef] [Google Scholar]
  15. S. Kullback, Information Theory and Statistics, Courier Corporation, 1997 [Google Scholar]
  16. R.G. Ghanem, P.D. Spanos, Stochastic finite element method: Response Statistics, Stochastic Finite Elements: A Spectral Approach, Springer, 1991 [CrossRef] [Google Scholar]
  17. M. Loève, Probability Theory. Courier Dover Publications, 2017 [Google Scholar]
  18. S. Khazaie, R. Cottereau, D. Clouteau, Influence of the spatial correlation structure of an elastic random medium on its scattering properties, J. Sound Vib. 370, 132–148 (2016) [CrossRef] [Google Scholar]
  19. M. Grigoriu, Crossings of non-Gaussian translation processes, J. Eng. Mech. 110, 610–620 (1984) [CrossRef] [Google Scholar]
  20. M. Grigoriu, Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MAT-LAB Solutions, Prentice Hall, Inc., Englewood Cliffs, NJ, 1995 [Google Scholar]
  21. M. Grigoriu, Simulation of stationary non-Gaussian translation processes, J. Eng. Mech. 124, 121–126 (1998) [CrossRef] [Google Scholar]
  22. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Math. Phys. 241, 376–396 (1957) [Google Scholar]
  23. E. Kroöner, Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys. 151, 504–518 (1958) [CrossRef] [Google Scholar]
  24. V.A. Lubarda, New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals, J. Mech. Phys. Solids 45, 471–490 (1997) [CrossRef] [Google Scholar]
  25. C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press, 1948 [Google Scholar]
  26. A.G. Every, A.K. McCurdy, Second and higher order elastic constants. Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology New Series Group III: Crystal and Solid State Physics, 1992 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.