Open Access
Issue
Mechanics & Industry
Volume 24, 2023
Article Number 34
Number of page(s) 21
DOI https://doi.org/10.1051/meca/2023029
Published online 15 September 2023
  1. A. Reille, V. Champaney, F. Daim, Y. Tourbier, N. Hascoet, D. Gonzalez, E. Cueto, J.L. Duval, F. Chinesta, Learning data-driven reduced elastic and inelastic models of spot-welded patches, Mech. Ind. 22, 32 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  2. P. Salvini, F. Vivio, V. Vullo, A spot weld finite element for structural modelling, Int. J. Fatigue 22, 645–656 (2000) [CrossRef] [Google Scholar]
  3. A. Rupp, K. Storzel, V. Grubisic, Computer aided dimensioning of spot-welded automotive structures, SAE Tech. Pap. 950711 (1995) [CrossRef] [Google Scholar]
  4. R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Dev. 11, 215–234 (1967) [CrossRef] [Google Scholar]
  5. J. Mandel, Balancing domain decomposition, Int. J. Numer. Methods Biomed. Eng. 9, 233–241 (1993) [Google Scholar]
  6. C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Meth. Eng. 32 1205–1227 (1991) [CrossRef] [Google Scholar]
  7. P. Ladevèze, O. Loiseau, D. Dureisseix, A micro–macro and parallel computational strategy for highly heterogeneous structures, Int. J. Numer. Meth. Eng. 52, 121–138 (2001) [CrossRef] [Google Scholar]
  8. H. Ben Dhia, G. Rateau, The Arlequin method as a flexible engineering design tool, Int. J. Numer. Methods Eng. 62, 1442–1462 (2005) [CrossRef] [Google Scholar]
  9. L. Gendre, O. Allix, P. Gosselet, Non-intrusive and exact global/local techniques for structural problems with local plasticity, Comput Mech. 44, 233–245 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Gendre, O. Allix, P. Gosselet, A two-scale approximation of the Schur complement and its use for nonintrusive coupling, Int. J. Numer. Meth. Eng. 87, 889–905 (2011) [CrossRef] [Google Scholar]
  11. J.C. Passieux, J. Réthoré, A. Gravouil, M.C. Baietto, Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver, Comput Mech. 56, 1381–1393 (2013) [CrossRef] [Google Scholar]
  12. M. Duval, J.C. Passieux, M. Salaün, et al., Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition, Arch. Computat. Methods Eng. 23, 17–38 (2016) [CrossRef] [Google Scholar]
  13. G. Guguin, O. Allix, P. Gosselet, On the computation of plate assemblies using realistic 3D joint model: a non-intrusive approach, Adv. Model. Simul. Eng. Sci. 3 (2016) [Google Scholar]
  14. T. Chantrait, J. Rannou, A. Gravouil, Low intrusive coupling of implicit and explicit time integration schemes for structural dynamics: application to low energy impacts on composite structures, Finite Elem. Anal. Des. 86, 23–33 (2014) [CrossRef] [MathSciNet] [Google Scholar]
  15. O. Bettinotti, O. Allix, U. Perego, V. Oancea, B. Malherbe, Simulation of delamination under impact using a global-local method in explicit dynamics, Finite Elem. Anal. Des. 125, 1–13 (2017) [CrossRef] [Google Scholar]
  16. F. Chinesta, A. Huerta, G. Rozza, K. Willcox, Model order reduction, in: E. Stein, R. de Borst, T. Hughes (Eds.), The Encyclopedia of Computational Mechanics, 2nd ed., John Wiley & Sons Ltd., 2015 [Google Scholar]
  17. G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Computat. Methods Eng. 15, 229 (2008) [CrossRef] [Google Scholar]
  18. S.K. Kauwe, J. Graser, A. Vazquez, T.D. Sparks, Machine learning prediction of heat capacity for solid inorganics, Integr. Mater. Manuf. Innov. 7, 43–51 (2018) [CrossRef] [Google Scholar]
  19. P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93, 9 (2016) [CrossRef] [Google Scholar]
  20. C. Tesche, C.N. De Cecco, S. Baumann, et al., Coronary CT angiography–derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology 288, 64–72 (2018) [CrossRef] [PubMed] [Google Scholar]
  21. B. Alipanahi, A. Delong, M. Tweirauch, B.J. Frey, Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning, Nat. Biotechnol. 33, 831–838 (2015) [CrossRef] [PubMed] [Google Scholar]
  22. J. Willard, X. Jia, S. Xu, et al., Integrating scientific knowledge with machine learning for engineering and environmental systems, ACM Comput. Surv. 55, 1–37 (2022) [Google Scholar]
  23. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Computat. Phys. 378, 686–707 (2019) [CrossRef] [Google Scholar]
  24. F. As’ad, P. Avery, C. Farhat, A mechanics-informed artificial neural network approach in data-driven constitutive modelling, AIAA 2022-0100. AIAA SCITECH 2022 Forum, 2022 [Google Scholar]
  25. J.S. Read, X. Jia, J. Willard, A.P. Appling, et al., Process-guided deep learning predictions of lake water temperature, Water Resour. Res. 55, 9173–9190 (2019) [CrossRef] [Google Scholar]
  26. P. Sturmfels, S. Rutherford, M. Angstadt, et al., A domain guided CNN architecture for predicting age from structural brain images, arXiv:1808.04362 (2018) [Google Scholar]
  27. A. Daw, R.Q. Thomas, C.C. Carey, J.S. Read, A.P. Appling, A. Karpatne, Physics-guided architecture (PGA) of neural networks for quantifying uncertainty in lake temperature modelling, arXiv:1911.02682 (2019) [Google Scholar]
  28. F. Hamilton, A.L. Lloyd, K.B. Flores, Hybrid modeling and prediction of dynamical systems, PLoS Computat. Biol. 13, pp. e1005655 (2017) [CrossRef] [Google Scholar]
  29. T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Ltd, 2000 [Google Scholar]
  30. O. Bettinotti, O. Allix, U. Perego, V. Oancea, B. Malherbe, A fast weakly intrusive multiscale method in explicit dynamics, Int. J. Numer. Methods Eng. 100, 577–595 (2014) [CrossRef] [Google Scholar]
  31. M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M. Bessa, Deep learning predicts path-dependent plasticity, Proc. Natl. Acad. Sci. U.S.A. 116, 26414–26420 (2019) [CrossRef] [PubMed] [Google Scholar]
  32. M.B. Gorji, M. Mozaffar, J.N. Heidenreich, J. Cao, D. Mohr, On the potential of recurrent neural networks for modeling path dependent plasticity, J. Mech. Phys. Solids 143, 103972 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  33. F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based artificial neural networks for constitutive modelling, J. Mech. Phys. Solids 147, 1–28 (2021) [Google Scholar]
  34. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z.B. Wojna, Rethinking the inception architecture for computer vision, CoRR, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 2818–2826 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.