Issue
Mechanics & Industry
Volume 24, 2023
History of matter: from its raw state to its end of life
Article Number 39
Number of page(s) 24
DOI https://doi.org/10.1051/meca/2023034
Published online 08 November 2023
  1. Y. Wang, P. Lava, S. Coppieters, P. V. Houtte, D. Debruyne, Application of a multi-camera stereo DIC set-up to assess strain fields in an Erichsen test: methodology and validation, Strain. 49, 190–198 (2013) [CrossRef] [Google Scholar]
  2. P. Duchene, S. Chaki, A. Ayadi, P. Krawczak, A review of non-destructive techniques used for mechanical damage assessment in polymer composites, J. Mater. Sci. 53, 7915–7938 (2018) [CrossRef] [Google Scholar]
  3. A. Ayadi, M-F. Lacrampe, P. Krawczak, A comprehensive study of bubble inflation in vacuum-assisted thermoforming based on whole-field strain measurements, in: AIP Conf. Proc., 2018, p. 120004. [CrossRef] [Google Scholar]
  4. A. Ayadi, M-F. Lacrampe, P. Krawczak, Assessment of the elongational properties of HIPS membranes based on full-field strain measurements during positive thermoforming, 12 th Internationl Conference on Advances in Experimental mechanics, August 2017, Sheffield, United Kingdom. https://imt.hal.science/view/index//identifiant/hal/-01779760 [Google Scholar]
  5. Ghosh Dastidar, A. Ayadi, M-F. Lacrampe, Reliability of hybrid inverse identification based on stereo-dic measurements to assess HIPS hyperelastic parameters: case of isothermal tensile loads, Procedia Manuf. 47, 933–939 (2020) [CrossRef] [Google Scholar]
  6. J.A. Turner, G.H. Menary, P.J. Martin, Biaxial characterization of poly(ether-ether-ketone) for thermoforming: a comparison between bulge and in-plane biaxial testing, Polym. Eng. Sci. 59, 1853–1865 (2019) [CrossRef] [Google Scholar]
  7. B. Van Mieghem, J. Ivens, A. Van Bael, Consistency of strain fields and thickness distributions in thermoforming experiments through stereo DIC, Exp. Tech. 40, 1409–1420 (2016) [CrossRef] [Google Scholar]
  8. B. Van Mieghem, F. Desplentere, A. Van Bael, J. Ivens, Improvements in thermoforming simulation by use of 3D digital image correlation, Express Polym. Lett. 9, 119–128 (2015) [CrossRef] [Google Scholar]
  9. M. Neubauer, M. Dannemann, N. Herzer, B. Schwarz, N. Modler, Analysis of a film forming process through coupled image correlation and infrared thermography, Polymers (Basel). 14, 1231 (2022) [CrossRef] [Google Scholar]
  10. R. Bigger, B. Blaysat, C. Boo, M. Grewer, J. Hu, A. Jones, M. Klein, K. Raghavan, P. Reu, T. Schmidt, T. Siebert, M. Simenson, D. Turner, A. Vieira, T. Weikert, A good practices guide for digital image correlation, Int. Digit. Image Correl. Soc.(2018). DOI:10.32720/IDICS/GPGED1. [Google Scholar]
  11. M.A. Sutton, F. Hild, Recent advances and perspectives in digital image correlation, Exp. Mech. 55, 1–8 (2015) [CrossRef] [Google Scholar]
  12. B. Beaubier, J.-E. Dufour, F. Hild, S. Roux, S. Lavernhe, K. Lavernhe-Taillard, CAD-based calibration and shape measurement with stereoDIC, Exp. Mech. 54, 329–341 (2014) [CrossRef] [Google Scholar]
  13. T. Siebert, E. Hack, G. Lampeas, E.A. Patterson, K. Splitthof, Uncertainty quantification for DIC displacement measurements in industrial environments, Exp. Tech. 45, 685–694 (2021) [CrossRef] [Google Scholar]
  14. Y. Sieffert, F. Vieux-Champagne, S. Grange, P. Garnier, J.C. Duccini, L. Daudeville, Full-field measurement with a digital image correlation analysis of a shake table test on a timber-framed structure filled with stones and earth, Eng. Struct. 123, 451–472 (2016) [CrossRef] [Google Scholar]
  15. X. Shao, X. He, Camera motion-induced systematic errors in stereo-DIC and speckle-based compensation method, Opt. Lasers Eng. 149, 106809 (2022) [CrossRef] [Google Scholar]
  16. S. Barone, P. Neri, A. Paoli, A.V. Razionale, Low-frame-rate single camera system for 3D full-field high-frequency vibration measurements, Mech. Syst. Signal Process. 123, 143–152 (2019) [CrossRef] [Google Scholar]
  17. R. Balcaen, P.L. Reu, P. Lava, D. Debruyne, Influence of camera rotation on stereo-DIC and compensation methods, Exp. Mech. 58, 1101–1114 (2018) [CrossRef] [Google Scholar]
  18. Y. Su, Z. Gao, Q. Zhang, S. Wu, Spatial uncertainty of measurement errors in digital image correlation, Opt. Lasers Eng. 110, 113–121 (2018) [CrossRef] [Google Scholar]
  19. R. Balcaen, P.L. Reu, P. Lava, D. Debruyne, Stereo-DIC uncertainty quantification based on simulated images, Exp. Mech. 57, 939–951 (2017) [CrossRef] [Google Scholar]
  20. E.M.C. Jones, P.L. Reu, Distortion of digital image correlation (DIC) displacements and strains from heat waves, Exp. Mech. 58, 1133–1156 (2018) [CrossRef] [Google Scholar]
  21. M. Berny, T. Archer, A. Mavel, P. Beauchêne, S. Roux, F. Hild, On the analysis of heat haze effects with spacetime DIC, Opt. Lasers Eng. 111, 135–153 (2018) [CrossRef] [Google Scholar]
  22. J.S. Lyons, J. Liu, M.A. Sutton, High-temperature deformation measurements using digital-image correlation, Exp. Mech. 36, 64–70 (1996) [CrossRef] [Google Scholar]
  23. L. Yu, B. Pan, Overview of high-temperature deformation measurement using digital image correlation, Exp. Mech. 61, 1121–1142 (2021) [CrossRef] [Google Scholar]
  24. A. Yuile, R. Schwerz, M. Roellig, R. Metasch, S. Wiese, Heat haze effects in thermal chamber tensile tests on digital image correlation, in: 2018 19th Int. Conf. Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems, IEEE, 2018, pp. 1–7. 2018. 8369882. [Google Scholar]
  25. C. Ma, Z. Zeng, H. Zhang, X. Rui, A correction method for heat wave distortion in digital image correlation measurements based on background-oriented schlieren, Appl. Sci. 9, 3851 (2019) [CrossRef] [Google Scholar]
  26. A. Ghosh Dastidar, A. Ayadi, M-F. Lacrampe, Reliability of hybrid inverse identification based on stereo-DIC measurements to assess HIPS hyperelastic parameters: case of isothermal tensile loads, Procedia Manuf. 47, 933–939 (2020) [CrossRef] [Google Scholar]
  27. B. Van Mieghem, J. Ivens, A. Van Bael, Consistency of strain fields and thickness distributions in thermoforming experiments through stereo DIC, Exp. Tech. 40, 1409–1420 (2016) [CrossRef] [Google Scholar]
  28. A. Ghosh Dastidar, Modeling and Simulation of Thermoforming, doctoral thesis, IMT Nord Europe, 2022 [Google Scholar]
  29. A. Ayadi, M-F. Lacrampe, P. Krawczak, Bubble assisted vacuum thermoforming: considerations to extend the use of in-situ stereo-DIC measurements to stretching of sagged thermoplastic sheets, Int. J. Mater. Form. 13, 59–76 (2020) [CrossRef] [Google Scholar]
  30. E. Bilgen, H. Oztop, Natural convection heat transfer in partially open inclined square cavities, Int. J. Heat Mass Transf. 48, 1470–1479 (2005) [CrossRef] [Google Scholar]
  31. A. Ayadi, H. Nouri, S. Guessasma, F. Roger, Large-scale x-ray microtomography analysis of fiber orientation in weld line of short glass fiber reinforced thermoplastic and related elasticity behavior, Macromol. Mater. Eng. 301, 907–921 (2016) [CrossRef] [Google Scholar]
  32. I.V. Miroshnichenko, M.A. Sheremet, Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: a review, Renew. Sustain. Energy Rev. 82, 40–59 (2018) [CrossRef] [Google Scholar]
  33. B. Zhao, Derivation of unifying formulae for convective heat transfer in compressible flow fields, Sci. Rep. 11, 16762 (2021) [CrossRef] [Google Scholar]
  34. R. Harish, Buoyancy driven turbulent plume induced by protruding heat source in vented enclosure, Int. J. Mech. Sci. 148, 209–222 (2018) [CrossRef] [Google Scholar]
  35. A. Saxena, V. Kishor, S. Singh, A. Srivastava, Experimental and numerical study on the onset of natural convection in a cavity open at the top, Phys. Fluids. 30, 057102 (2018) [CrossRef] [Google Scholar]
  36. S.B. Dalziel, G.O. Hughes, B.R. Sutherland, Whole-field density measurements by “synthetic schlieren,” Exp. Fluids. 28, 322–335 (2000) [Google Scholar]
  37. H. Richard, M. Raffel, Principle and applications of the background oriented schlieren (BOS) method, Meas. Sci. Technol. 12, 1576–1585 (2001) [CrossRef] [Google Scholar]
  38. P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared, Appl. Opt. 35, 1566 (1996) [NASA ADS] [CrossRef] [Google Scholar]
  39. L. Yu, B. Pan, The errors in digital image correlation due to overmatched shape functions, Meas. Sci. Technol. 26, 045202 (2015) [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.