Open Access
Mechanics & Industry
Volume 24, 2023
Article Number 38
Number of page(s) 13
Published online 07 November 2023
  1. W.H. Frey, D. Bindschadler, Computer Aided Design of a Class of Developable Bézier Surfaces, General Motors R & D Publication 8057 Springer Verlag, New York, USA, 1993 [Google Scholar]
  2. W. Gunter, P. Peter, Computer-aided treatment of developable surfaces, Comput. Graph. 12, 39–51 (1988) [CrossRef] [Google Scholar]
  3. T. Maekawa, J. Chalfant, Design and tessellation of B-spline developable surfaces, J. Mech. Des. 120, 453–461 (1998) [CrossRef] [Google Scholar]
  4. G. Aumann, A simple algorithm for designing developable Bézier surfaces, Comput. Aided Geom. Des. 20, 601–619 (2003) [CrossRef] [Google Scholar]
  5. X.W. Zhang, G.J. Wang, A new algorithm for designing developable Bézier surfaces, J. Zhejiang Univ. Sci. A, 7, 2050–2056 (2006) [CrossRef] [Google Scholar]
  6. C.H. Chu, C. Wang, C.R. Tsai, Computer aided geometric design of strip using developable Bézier patches, Comput. Ind. 59, 601–611 (2008) [CrossRef] [Google Scholar]
  7. H.D. Hwang, S.H. Yoon, Constructing developable surfaces by wrapping cones and cylinders, Comput. Aided Des. 58, 230–235 (2015) [CrossRef] [Google Scholar]
  8. R. Bodduluri, B. Ravani, Design of developable surfaces using duality between plane and point geometries, Comput. Aided Des. 25, 621–632 (1993) [CrossRef] [Google Scholar]
  9. R.M.C. Bodduluri, B. Ravani, Geometric design and fabrication of developable Bézier and B-spline surfaces, J. Mech. Des. 116, 1042–1048 (1994) [CrossRef] [Google Scholar]
  10. M. Zhou, G.H. Peng, Z.L. Ye, Design of developable surfaces by using duality between plane and point geometries, J. Comput. Aided Geom. Des. Graph. 16, 1401–1406 (2004) [Google Scholar]
  11. M. Zhou, J.Q. Yang, H.C. Zheng et al., Design and shape adjustment of developable surfaces, Appl. Math. Model. 37, 3789–3801 (2013) [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Hu, H.X. Cao, X.Q. Qin et al., Geometric design and continuity conditions of developable λ-Bézier surfaces, Adv. Eng. Softw. 114, 235–245 (2017) [CrossRef] [Google Scholar]
  13. G. Hu, H.X. Cao, X.Q. Qin, Construction of generalized developable Bézier surfaces with shape parameters, Math. Methods Appl. Sci. 41, 7804–7829 (2018) [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Hu, H.X. Cao, S.X. Zhang, Developable Bézier-like surfaces with multiple shape parameters and its continuity conditions, Appl. Math. Model. 45, 728–747 (2017) [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Hu, J.L. Wu, X.Q. Qin, A new approach in designing of local controlled developable H-Bézier surfaces, Adv. Eng. Softw. 125, 27–54 (2018) [CrossRef] [Google Scholar]
  16. G. Hu, J.L. Wu, Generalized quartic H-Bézier curves: construction and application to developable surfaces, Adv. Eng. Softw. 138, 102723 (2019) [CrossRef] [Google Scholar]
  17. G. Aumann, Interpolation with developable Bézier patches, Comput. Aided Geom. Des. 8, 409–420 (1991) [CrossRef] [Google Scholar]
  18. K. Tang, M. Chen, Quasi-developable mesh surface interpolation via mesh deformation, IEEE Trans. Vis. Comput. Graph. 15 (3), 518–528 (2009) [CrossRef] [PubMed] [Google Scholar]
  19. M. Peternell, Developable surface fitting to point clouds, Comput. Aided Geom. Des. 21, 785–803 (2004) [CrossRef] [Google Scholar]
  20. Y.J. Liu, Y.K. Lai, S.M. Hu, Stripification of free-form surfaces with global error bounds for developable approximation, IEEE Trans. Autom. Sci. Eng. 6, 700–709 (2009) [CrossRef] [Google Scholar]
  21. L. Zeng, Y.J. Liu, M. Chen et al., Least squares quasi-developable mesh approximation, Comput. Aided Geom. Des. 29, 565–578 (2012) [CrossRef] [Google Scholar]
  22. C.H. Chu, J.T. Chen, Geometric design of developable composite Bézier surfaces, Comput. Aided Des. Appl. 1, 531–539 (2004) [CrossRef] [Google Scholar]
  23. G. Hu, H.X. Cao, X. Wang et al., G2 continuity conditions for generalized Bézier-like surfaces with multiple shape parameters, J. Inequal. Appl. 248, 1–17 (2017) [Google Scholar]
  24. C.Y. Li, C.G. Zhu, G1 continuity of four pieces of developable surfaces with Bézier boundaries, J. Comput. Appl. Math. (2018) [Google Scholar]
  25. G. Hu, J.L. Wu, H.N. Li et al., Shape optimization of generalized developable H-Bézier surfaces using adaptive cuckoo search algorithm, Adv. Eng. Softw. 149, 102889 (2020) [CrossRef] [Google Scholar]
  26. J.D. Schaffer, Multiple objective optimizations with vector evaluated genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985. Lawrence Erlbaum Associates Publishers, Hillsdale, 1985 [Google Scholar]
  27. N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2, 221–248 (1994) [CrossRef] [Google Scholar]
  28. K. Deb, S. Agrawal, A. Pratap et al., A fast and elitist multiobjective genetic algorithm: NSGA- II, IEEE Trans. Evol. Comput. 6, 182–197 (2002) [CrossRef] [Google Scholar]
  29. C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput. 8 , 256–279 (2004) [CrossRef] [Google Scholar]
  30. C.A.C. Coello, N.C. Cortes, Solving multiobjective optimization problems using an artificial immune system, Genet. Program. Evolvable Mach. 6, 163–190 (2005) [CrossRef] [Google Scholar]
  31. Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 11, 712–731 (2007) [CrossRef] [Google Scholar]
  32. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili et al., Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems, Adv. Eng. Softw. 114, 163–191 (2017) [CrossRef] [Google Scholar]
  33. S.Z. Mirjalili, S. Mirjalili, S. Saremi et al., Grasshopper optimization algorithm for multi-objective optimization problems, Appl. Intell. 48, 805–820 (2018) [CrossRef] [Google Scholar]
  34. D.E. Goldberg, D.M. Goldberg, Genetic algorithm is searching optimization and machine learning, Addison Wesley xiii, 2104–2116 (1989) [Google Scholar]
  35. G. Hu, X. Zhu, G. Wei et al., An improved marine predator's algorithm for shape optimization of developable Ball surfaces, Eng. Appl. Artif. Intell. 105, 104417 (2021) [CrossRef] [Google Scholar]
  36. J. Lu, X. Su, J. Zhong et al., Enhanced Salp Swarm algorithm for optimizing the shape of developable Bézier-like surfaces, Math. Probl. Eng. 2022, 1796642 (2022) [Google Scholar]
  37. G. Hu, X. Zhu, X. Wang et al., Multi-strategy boosted marine predators' algorithm for optimizing approximate developable surface, Knowl. −Based Syst. 254, 109615 (2022) [CrossRef] [Google Scholar]
  38. G. Hu, M. Li, J. Zhong, Combined cubic generalized ball surfaces: construction and shape optimization using an enhanced JS algorithm, Adv. Eng. Softw. 176, 103404 (2023) [CrossRef] [Google Scholar]
  39. S. BiBi, M.Y. Misro et al., Shape optimization of GHT-Bézier developable surfaces using particle swarm optimization algorithm, Optim. Eng. 24, 1321–1341 (2023) [CrossRef] [Google Scholar]
  40. J. Zheng, X. Ji, Z. Ma, G. Hu, Construction of local-shape-controlled quartic generalized said-ball model, Mathematics 11, 2369 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.