Issue
Mechanics & Industry
Volume 24, 2023
High fidelity models for control and optimization
Article Number 27
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2023021
Published online 14 August 2023
  1. E. Krzystała, A. Mężyk, S. Kciuk, Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast, Int. J. Inj. Contr. Saf. Promot. 23, 170–178 (2016) [CrossRef] [PubMed] [Google Scholar]
  2. A. Jonet, B. Belkassem, O. Atoui, L. Pyl, D. Lecompte, Blast mitigation using brittle foam based sacrificial cladding: a feasibility study, in 18th international symposium for the interaction of the effect of munitions with structures (2019) [Google Scholar]
  3. M.N.S. Hadi, T.M. Pham, X. Lei, New method of strengthening reinforced concrete square columns by circularizing and wrapping with fiber-reinforced polymer or steel straps, Compos. Struct. 17, 229–238 (2013) [Google Scholar]
  4. T.M. Pham, H. Hao, Review of concrete structures strengthened with FRP against impact loading, Structures 7, 59–70 (2016) [CrossRef] [Google Scholar]
  5. P.A. Buchan, J.F. Chen, Blast resistance of FRP composites and polymer strengthened concrete and masonry structures − a state-of-the-art review, Compos. B Eng. 38, 509–522 (2007) [CrossRef] [Google Scholar]
  6. G.S. Langdon, D. Karagiozova, M.D. Theobald, G.N. Nurick, G. Lu, R.P. Merrett, Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading, Int. J. Impact Eng. 37, 638–651 (2010) [CrossRef] [Google Scholar]
  7. H.B. Rebelo, D. Lecompte, C. Cismasiu, A. Jonet, B. Belkassem, A. Maazoun, Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding, Int. J. Impact Eng. 131, 162–173 (2019) [CrossRef] [Google Scholar]
  8. A.G. Hanssen, L. Enstock, M. Langseth, Close-range blast loading of aluminium foam panels, Int. J. Impact Eng. 27, 593–618 (2002) [CrossRef] [Google Scholar]
  9. L. Blanc, T. Schunck, D. Eckenfels, Sacrificial cladding with brittle materials for blast protection, Materials 14 (2021) [Google Scholar]
  10. A. Jonet, B. Belkassem, O. Atoui, L. Pyl, D. Lecompte, Blast mitigation using brittle foam based sacrificial cladding: a feasibility study, in 18th International Symposium for the Interaction of the Effect of Munitions with Structures (2019) [Google Scholar]
  11. H. Liu, Z.K. Cao, G.C. Yao, H.J. Luo, G.Y. Zu, Performance of aluminum foam-steel panel sandwich composites subjected to blast loading, Mater. Des. 47, 483–488 (2013) [CrossRef] [Google Scholar]
  12. G. Sun, E. Wang, J. Zhang, S. Li, Y. Zhang, Q. Li, Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse, Int. J. Impact Eng. 135 (2020) [Google Scholar]
  13. K.A. Brekken, A. Reyes, T. Børvik, T. Berstad, M. Langseth, Sandwich panels with polymeric foam cores exposed to blast loading: An experimental and numerical investigation, Appl. Sci. (Switzerland) 10, 1–36 (2020) [Google Scholar]
  14. L.J. Gibson, M.F. Ashby, Cellular Solids Structure and Properties, 2nd ed. (Cambridge, 1999) [Google Scholar]
  15. H. Ousji, B. Belkassem, M.A. Louar, B. Reymen, L. Pyl, J. Vantomme, Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam, Adv. Civil Eng. 2016 (2016) [CrossRef] [Google Scholar]
  16. H. Ousji, B. Belkassem, M.A. Louar, B. Reymen, L. Pyl, J. Vantomme, Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam, Adv. Civil Eng. 2016 (2016) [CrossRef] [Google Scholar]
  17. Y. Sun, Q.M. Li, Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling, Int. J. Impact Eng. 112, 74–115 (2018) [CrossRef] [Google Scholar]
  18. C. Wu, Y. Zhou, Simplified analysis of foam cladding protected reinforced concrete slabs against blast loadings, Int. J. Protect. Struct. 2, 351–365 (2011) [CrossRef] [Google Scholar]
  19. H. El Yamani, J.-L. Hanus, H. Zeng, P. Bailly, G. Prod, B. Le-Roux, Comportement mécanique d'une mousse de polyuréthane sous sollicitations statiques et dynamiques, in 24ème Congrès Français de Mécanique, Brest (2019). Available: https://hal.science/hal-02489088 [Google Scholar]
  20. K.R. Ramakrishnan, S. Guérard, L. Maheo, K. Shankar, P. Viot, A new method for the study of parabolic impact of foam-core sandwich panels, Compos. B Eng. 167, 717–727 (2019) [CrossRef] [Google Scholar]
  21. G.W. Ma, Z.Q. Ye, Analysis of foam claddings for blast alleviation, Int. J. Impact Eng. 34, 60–70 (2007) [CrossRef] [Google Scholar]
  22. C.J. Oswald, E.J. Conrath, A Computer Program for Explosive Damage Assessment of Conventional Buildings, Omaha District, Omaha (1994) [Google Scholar]
  23. F. Liu, Q.M. Li, Strain-rate effect on the compressive strength of brittle materials and its implementation into material strength model, Int. J. Impact Eng. 130, 113–123 (2019) [CrossRef] [Google Scholar]
  24. P. Forquin, Brittle materials at high-loading rates: an open area of research, Philos. Trans. Royal Soc. A 375 (2017) [Google Scholar]
  25. Z. Li, W. Chen, H. Hao, Mechanical properties of carbon foams under quasi-static and dynamic loading, Int. J. Mech. Sci. 161–162 (2019) [Google Scholar]
  26. G. Janszen, P.G. Nettuno, Implementation and validation of a strain rate dependent model for carbon foam, WIT Trans. Modell. Simul. 48, 105–115 (2009) [CrossRef] [Google Scholar]
  27. LSTC, LS-DYNA KEYWORD USER'S MANUAL VOLUME I, vol. I (2017). Available: www.lstc.com [Google Scholar]
  28. K. Ramaswamy, B. Patham, V. Savic, B. Tripathy, Stable and accurate LS-DYNA simulations with foam material models: optimization of finite element model parameters, SAE Int. J. Mater. Manufactur. 10, 226–233 (2017) [CrossRef] [Google Scholar]
  29. E. Serifi, A. Hirth, S. Matthaei, H. Müllerschön, Modelling of foams using MAT83-preparation and evaluation of experimental data, in 4th European LS-DYNA Users Conference (2003) [Google Scholar]
  30. M.A. Louar et al., Explosive driven shock tube loading of aluminium plates: experimental study, Int. J. Impact Eng. 86, 111–123 (2015) [CrossRef] [Google Scholar]
  31. J. Lankford, Mechanisms responsible for strain-rate-dependent compressive strength in ceramic materials, Commun. Am. Ceramic Soc. 75, 33–34 (1981) [Google Scholar]
  32. T. Ngo, P. Mendis, A. Gupta, J. Ramsay, Blast loading and blast effects on structures − an overview, EJSE Int. 1, pp. 76–91 (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.