Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 8
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2024006
Published online 06 March 2024
  1. S.S. Lin, M. Tang, B. Li, W.H. Shi, Design of an improved active disturbance rejection control method for a direct-drive gearshift system equipped with electromagnetic linear actuators in a motor-transmission coupled drive system, Actuator 12, 40 (2023) [CrossRef] [Google Scholar]
  2. C. Zheng, L. Liu, Z.P. Xu, Optimization design of a fully variable valve system based on Nelder-Mead algorithm, Proc I. MechE. Part D: J. Mech. Eng. Sci. 236, 5815–5825 (2022) [CrossRef] [Google Scholar]
  3. P. Khatri, Z.W. Liu, J. Rudolph et al., A study of a modified design of dumbbell-shaped flux switching tubular linear generator for regular wave energy conversion, Renew. Energ. 208, 287–300 (2023) [CrossRef] [Google Scholar]
  4. S.S. Lin, B. Li, W.D. Jiao, Gearshift performance improvement for an electromagnetic gearshift system based on optimized active disturbance rejection control method, Adv. Mech. Eng. 11, 1–15 (2019) [Google Scholar]
  5. A. Wróblewski, P. Krot, R. Zimroz et al., Review of linear electric motor hammers—an energy-saving and eco-friendly solution in industry, Energies 16, 959 (2023) [CrossRef] [Google Scholar]
  6. L.P. Zhang, H.J. Yang, Y.N. Peng, S.H. Li, A novel synchronizer for clutchless automated manual transmissions applied in electric vehicles, Mech. Mach. Theory 170, 104688 (2022) [CrossRef] [Google Scholar]
  7. A. Sorniotti, T. Holdstock, G. Pilone et al., Analysis and simulation of the gearshift methodology for a novel two-speed transmission system for electric powertrain with a central motor, Proc I. MechE. Part D: J. Automobile Eng. 226, 915–929 (2012) [CrossRef] [Google Scholar]
  8. Y.D. Liauw, M. Roozegar, T. Zou et al., A topology-change model of multi-speed transmissions in electric vehicles during gear-shifing, Mechatronics 55, 151–161 (2018) [CrossRef] [Google Scholar]
  9. Y. Zhang, H. Zhao, F.F. Qin, A Lyapunov based robust control of the EV gearshift process, Proc. ImechE. Part D: J. Automobile Eng. 237, 1–15 (2022) [Google Scholar]
  10. G. Wu, Z.M. Dong, Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission, Mech. Syst. Signal Process. 93, 699–705 (2017) [Google Scholar]
  11. A.M. Gavgani, A. Sorniotti, J. Doherty et al., Optimal gearshift control for a novel hybrid electric drivetrain, Mech. Mach. Theory 105, 352–368 (2016) [CrossRef] [Google Scholar]
  12. T.S. Nguyen, J. Song, L.Y. Yu et al., Design and development of a real-time simulation and testing platform for a novel seamless two-speed transmission for electric vehicles, J. Dyn. Syst. Meas. Contr. 141, 021007 (2019) [CrossRef] [Google Scholar]
  13. M. Mousavi, A. Pakniyat, T. Wang et al., Seamless dual brake transmission for electric vehicles: design, control and experiment, Mech. Mach. Theory 94, 96–118 (2015) [CrossRef] [Google Scholar]
  14. W.W. Mo, J.L. Wu, P.D. Walker et al., Shift characteristics of a bilateral harpoon-shift synchronizer for electric vehicles equipped with clutchless AMTs, Mech. Syst. Signal Process. 148, 107166 (2021) [CrossRef] [Google Scholar]
  15. H.Q. Yue, C.Y. Zhu, B.Z. Gao, Fork-less two-speed I-AMT with overrunning clutch for light electric vehicle, Mech. Mach. Theory 130, 157–169 (2018) [CrossRef] [Google Scholar]
  16. S.S. Lin, B. Li, Shift force optimization and trajectory tracking control for a novel gearshift system equipped with electromagnetic linear actuators, IEEE/ASME Trans. Mechatron. 24, 1640–1650 (2019) [CrossRef] [Google Scholar]
  17. U. Stockinger, T. Schneider, H. Pflaum, K. Stahl. Single vs. multi-cone synchronizers with carbon friction lining—a comparison of load limits and deterioration behavior, Forsch Ingenieurwes, 84, 245–253 (2020) [CrossRef] [Google Scholar]
  18. D. Häggström, U. Sellgren, S. Björklund. Optimization of synchronizer cone angle with regard to manufacturing tolerances of cone roundness and cone angle, Proc. IMechE Part D: J. Automobile Eng. 234, 1–8 (2019) [Google Scholar]
  19. D. Häggström, P. Nyman, U. Sellgren, S. Björklund, Predicting friction in synchronizer systems, Tribol. Int. 97, 89–96 (2016) [CrossRef] [Google Scholar]
  20. Y.W. Wang, J.L. Wu, N. Zhang, W.W. Mo, Dynamics modeling and shift control of a novel spring-based synchronizer for electric vehicles, Mech. Mach. Theory 168, 104586 (2022) [CrossRef] [Google Scholar]
  21. T. Liu, X.H. Zeng, D.F. Song, MPC-based coordinated control of gear shifting process for a power-split hybrid electric bus with a clutchless AMT, Chin. J. Mech. Eng. 35, 144 (2022) [CrossRef] [Google Scholar]
  22. L.Y. Yang, D.Y. Park, S.W. Lyu et al., Optimal control for shifting command of two-speed electric vehicles considering shifting loss, Int. J. Auto. Tech. 24, 1051–1059 (2023) [CrossRef] [Google Scholar]
  23. X.Y. Wang, L. Li, K. He et al., Position and force switching control for gear engagement of automated manual transmission gear-shift process, J. Dyn. Syst. Meas. Contr. 140, 081010 (2018) [CrossRef] [Google Scholar]
  24. P.D. Walker, Y.H. Fang, N. Zhang, Dynamics and control of clutchless automated manual transmissions for electric vehicles, J. Vib. Acoust. 139, 061005 (2017) [CrossRef] [Google Scholar]
  25. M.R. Ahssan, M. Ektesabi, S. Gorji, Evaluation of a three-parameter gearshift strategy for a two-speed transmission system in electric vehicles, Energies 16, 2496 (2023) [CrossRef] [Google Scholar]
  26. Y. Tian, H.T. Yang, W.W. Mo et al., Optimal coordinating gearshift control of a two-speed transmission for battery electric vehicles, Mech. Syst. Signal Process. 136, 106521 (2020) [CrossRef] [Google Scholar]
  27. Y. Tian, N. Zhang, S.L. Zhou et al., Model and gear shifting control of a novel two-speed transmission for battery electric vehicles, Mech. Mach. Theory 152, 103902 (2020) [CrossRef] [Google Scholar]
  28. M.A. Beaudoin, B. Boulet, Improving gearshift controllers for electric vehicles with reinforcement learning, Mech. Mach. Theory 169, 104654 (2022) [CrossRef] [Google Scholar]
  29. J.Q. Han, Active Disturbance Rejection Control Technique, National Defense Industry Press, 2008 [Google Scholar]
  30. Z.Q. Gao, S. Li, X.S. Zhou et al., Design of MPPT controller for photovoltaic generation system based on LADRC, Power Syst. Prot. Control 46, 52–59 (2018) [Google Scholar]
  31. X. Chen, D. Li, Z.Q. Gao et al., Tuning method for second-order active disturbance rejection control, in: 30th Chinese Control Conference, Yantai, China, 2011 [Google Scholar]
  32. Y.Q. Han, M.X. Xu, J. Sun et al., Improved DC bus voltage control of LADRC energy-storage inverter, Proc. CSU-EPSA 33, 13–21 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.