Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 7
Number of page(s) 19
DOI https://doi.org/10.1051/meca/2024004
Published online 01 March 2024
  1. W. Prager, G. Rozvany, Optimization of structural geometry, in: A. Bednarek, L. Cesari (Eds.), Dynamical Systems. Academic Press, 1977, pp. 265–293 [CrossRef] [Google Scholar]
  2. M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Appl. Mech. Eng. 71, 197–224 (1988) [CrossRef] [Google Scholar]
  3. M.P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1, 193–202 (1989) [CrossRef] [Google Scholar]
  4. O. Sigmund, Materials with prescribed constitutive parameters: an inverse homogenization problem, Int. J. Solids Struct. 31, 2313–2329 (1994) [CrossRef] [Google Scholar]
  5. Y. Xie, G. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49, 885–896 (1993) [CrossRef] [Google Scholar]
  6. G. Allaire, F. Jouve, A.-M. Toader, A level-set method for shape optimization, C.R. Acad. Sci. Paris, Série I, 334, 1125–1130 (2002) [CrossRef] [Google Scholar]
  7. M. Zhou, G. Rozvany, The coc algorithm, part ii: Topological, geometrical and generalized shape optimization, Comput. Methods Applied Mech. Eng. 89, 309–336 (1991) [CrossRef] [Google Scholar]
  8. M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization, Archive of Applied Mechanics 69, 635–654 (1999) [CrossRef] [Google Scholar]
  9. V. Challis, A. Roberts, A. Wilkins, Design of three dimensional isotropic microstructures for maximized stiffness and conductivity, Int. J. Solids Struct. 45, 4130–4146 (2008) [CrossRef] [Google Scholar]
  10. X. Huang, A. Radman, Y. Xie, Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput. Mater. Sci. 50, 1861–1870 (2011) [CrossRef] [Google Scholar]
  11. Y.M. Xie, X. Yang, J. Shen, X. Yan, A. Ghaedizadeh, J. Rong, X. Huang, S. Zhou, Designing orthotropic materials for negative or zero compressibility, Int. J. Solids Struct. 51, 4038–4051 (2014) [CrossRef] [Google Scholar]
  12. O. Sigmund, S. Torquato, Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids 45, 1037–1067 (1997) [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Wu, O. Sigmund, J.P. Groen, Topology optimization of multi-scale structures: a review, Struct. Multidiscipl. Optim. 63, 1455–1480 (2021) [CrossRef] [Google Scholar]
  14. Y. Wang, H. Xu, D. Pasini, Multiscale isogeometric topology optimization for lattice materials, Comput. Methods Appl. Mech. Eng. 316, 568–585 (2017) [CrossRef] [Google Scholar]
  15. S. Watts, W. Arrighi, J. Kudo, D. Tortorelli, D. White, Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with applications to multiscale topology design, Struct. Multidiscipl. Optim. 60, 1887–1920 (2019) [CrossRef] [Google Scholar]
  16. S. Zhou, Q. Li, Microstructural design of connective base cells for functionally graded materials, Mater. Lett. 62, 4022–4024 (2008) [CrossRef] [Google Scholar]
  17. E. Garner, H.M. Kolken, C.C. Wang, A.A. Zadpoor, J. Wu, Compatibility in microstructural optimization for additive manufacturing, Addit. Manuf. 26, 65–75 (2019) [Google Scholar]
  18. L. Xia, P. Breitkopf, Concurrent topology optimization design of material and structure within fe2 nonlinear multiscale analysis framework, Comput. Methods Appl. Mech. Eng. 278, 524–542 (2014) [CrossRef] [Google Scholar]
  19. L. Xia, P. Breitkopf, Multiscale structural topology optimization with an approximate constitutive model for local material microstructure, Comput. Methods Appl. Mech. Eng. 286, 147–167 (2015b) [CrossRef] [Google Scholar]
  20. C. Wang, J. Zhu, W. Zhang, S. Li, J. Kong, Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures, Struct. Multidiscipl. Optim. 58, 35–50 (2018) [CrossRef] [Google Scholar]
  21. C. Imediegwu, R. Murphy, R. Hewson, M. Santer, Multiscale structural optimization towards three-dimensional printable structures, Struct. Multidiscipl. Optim. 60, 513–525 (2019) [CrossRef] [Google Scholar]
  22. C. Wang, X. Gu, J. Zhu, H. Zhou, S. Li, W. Zhang, Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing, Struct. Multidiscipl. Optim. 61, 869–894 (2020) [CrossRef] [Google Scholar]
  23. N. Ferro, S. Perotto, D. Bianchi, R. Ferrante, M. Mannisi, Design of cellular materials for multiscale topology optimization: application to patient-specific orthopedic devices, Struct. Multidiscipl. Optim. 65, 79 (2022) [CrossRef] [Google Scholar]
  24. O. Pantz, K. Trabelsi, A post-treatment of the homogenization method for shape optimization, SIAM J. Control Optim. 47, 1380–1398 (2008) [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Allaire, P. Geoffroy-Donders, O. Pantz, Topology optimization of modulated and oriented periodic microstruc-tures by the homogenization method, Comput. Math. Appl. 78, 2197–2229 (2019) [MathSciNet] [Google Scholar]
  26. P. Geoffroy-Donders, G. Allaire, O. Pantz, 3-d topology optimization of modulated and oriented periodic micro-structures by the homogenization method, J. Comput. Phys. 108994 (2019) [Google Scholar]
  27. J.P. Groen, O. Sigmund, Homogenization-based topology optimization for high-resolution manufacturable mi-crostructures, Int. J. Numer. Methods Eng. 113, 1148–1163 (2018) [CrossRef] [Google Scholar]
  28. E. Duriez, J. Morlier, M. Charlotte, C. Azzaro-Pantel, A well connected, locally-oriented and efficient multi-scale to-pology optimization (emto) strategy, Struct. Multidiscipl. Optim. 64, 3705–3728 (2021) [CrossRef] [Google Scholar]
  29. L. Xia, P. Breitkopf, Design of materials using topology optimization and energy-based homogenization approach in matlab, Struct. Multidiscipl. Optim. 52, 1229–1241 (2015a) [CrossRef] [Google Scholar]
  30. Z. Xia, Y. Zhang, F. Ellyin, A unified periodical boundary conditions for representative volume elements of compo-sites and applications, Int. J. Solids Struct. 40, 1907–1921 (2003) [CrossRef] [Google Scholar]
  31. Z. Wu, L. Xia, S. Wang, T. Shi, Topology optimization of hierarchical lattice structures with substructuring, Comput. Methods Appl. Mech. Eng. 345, 602–617 (2019) [CrossRef] [Google Scholar]
  32. C. Zhang, S. Xu, J. Liu, Y. Ma, Comprehensive clustering-based topology optimization for connectable multi-scale additive manufacturing structures, Addit. Manuf. 54, 102786 (2022) [Google Scholar]
  33. E. Andreassen, A. Clausen, M. Schevenels, B.S. Lazarov, O. Sigmund, Efficient topology optimization in matlab us-ing 88 lines of code, Struct. Multidiscipl. Optim. 43, 1–16 (2011) [CrossRef] [Google Scholar]
  34. O. Sigmund, A 99 line topology optimization code written in matlab, Struct. Multidiscipl. Optim. 21, 120–127 (2001) [Google Scholar]
  35. E.A. Nadaraya, On estimating regression, Theory Probab. Appl. 9, 141–142 (1964) [CrossRef] [Google Scholar]
  36. K. Svanberg, The method of moving asymptotes — a new method for structural optimization, Int. J. Numer. Methods Eng. 24, 359–373 (1987) [CrossRef] [Google Scholar]
  37. J. Wallach, L. Gibson, Mechanical behavior of a three-dimensional truss material, Int. J. Solids Struct. 38, 7181–7196 (2001) [CrossRef] [Google Scholar]
  38. L. Liu, J. Yan, G. Cheng, Optimum structure with homogeneous optimum truss-like material, Comput. Struct. 86, 1417–1425 (2008) [CrossRef] [Google Scholar]
  39. M.P. Schmidt, C.B.W. Pedersen, C. Gout, On structural topology optimization using graded porosity control, Struct. Multidiscipl. Optim. 60, 1437–1453 (2019) [CrossRef] [Google Scholar]
  40. Open-source available on GitHub for reproducible research purpose (https://github.com/mid2SUPAERO/Ex-EMTO) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.