Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 10
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2023041
Published online 15 March 2024
  1. Z. Wang, K. Maruyama, F. Narita, A novel manufacturing method and structural design of functionally graded piezoelectric composites for energy-harvesting, Mater. Des. 214, (2022) [Google Scholar]
  2. J. Maruani, Contrôle Actif des Vibrations de Structures Elancées FGPM, Thése de doctorat, Université Paris Nanterre, Paris, 2019 [Google Scholar]
  3. J. Maruani, I. Bruant, F. Pablo, L. Gallimard, Active vibration control of a smart functionally graded piezoelectric material plate using an adaptive fuzzy controller strategy, J. Intell. Mater. Syst. Struct. 30, 2065–2078 (2019) [CrossRef] [Google Scholar]
  4. J. Li, Y. Xue, F. Li, Y. Narita, Active vibration control of functionally graded piezoelectric material plate, Compos. Struct. 207, 509–518 (2019) [CrossRef] [Google Scholar]
  5. Y. Cao, H. Huang, Z.H. Zhu, S. Su, Optimized energy harvesting through piezoelectric functionally graded cantilever beams, Smart Mater. Struct. 28, (2019) [Google Scholar]
  6. Y. Amini, P. Fatehi, M. Heshmati, H. Parandvar, Time domain and frequency domain analysis of functionally graded piezoelectric harvesters subjected to random vibration: finite element modeling, Compos. Struct. 136, 384–393 (2016) [CrossRef] [Google Scholar]
  7. H. Emoto, J. Hojo, Sintering and dielectric properties of BaTiO3-Ni composite ceramics, J. Cer. Soc. Japan, 100, 555–559 (1992) [CrossRef] [Google Scholar]
  8. C. Pecharromán, F. Esteban-Betegón, J.F. Bartolomé, S. López-Esteban, J.S. Moya, New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (∊r ≈ 80000), Adv. Mater. 13, 1541–1544 (2021) [Google Scholar]
  9. M. Saleem, I.S. Kim, J.S. Song, S.J. Jeong, M.S. Kim, S. Yoon, Synthesis, sintering and dielectric properties of a BaTiO3-Ni composite, Ceram. Int., 40, 7329–7335 (2014) [CrossRef] [Google Scholar]
  10. S. Panteny, C.R. Bowen, R. Stevens, Characterisation of barium titanate-silver composites, part I: Microstructure and mechanical properties, J. Mater. Sci. 41, 3837–3843 (2006) [CrossRef] [Google Scholar]
  11. X. Ning, P. Yongping, W. Bo, W. Haidong, C. Kai, Enhanced mechanical and dielectric behavior of BaTiO3/Cu composites, Ceram. Int. 38, 141–146 (2012) [CrossRef] [Google Scholar]
  12. F. Chao, N. Bowler, X. Tan, G. Liang, M.R. Kessler, Influence of adsorbed moisture on the properties of cyanate ester/BaTiO3 composites, Compos. Part A Appl. Sci. Manuf. 40, 1266–1271 (2009) [CrossRef] [Google Scholar]
  13. M. Watanabe, K. Yokoyama, Y. Imai, S. Ueta, X.L. Yan, Spark plasma sintering of SiC/graphite functionally graded materials, Ceram. Int. 48, 8706–8708 (2022) [CrossRef] [Google Scholar]
  14. M.J. Oza, K.G. Schell, E.C. Bucharsky, T. Laha, S. Roy, Developing a hybrid Al–SiC-graphite functionally graded composite material for optimum composition and mechanical properties, Mater. Sci. Eng. A, 805, (2021) [Google Scholar]
  15. K. Takagi, J.-F. Li, S. Yokoyama, R. Watanabe, Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators, J. Eur. Cer. Soc., 23, 1577–1583 (2023) [Google Scholar]
  16. H.L. Zhang, J.F. Li, B.P. Zhang, Fabrication and evaluation of PZT/Ag composites and functionally graded piezoelectric actuators, J. Electroceramics, 16, 413–417 (2006) [CrossRef] [Google Scholar]
  17. S.-S. Ryu, H.-T. Kim, J. Kim, S. Kim, Characterization of mechanical properties of BaTiO3 ceramic with different types of sintering aid by nanoindentation, J. Cer. Soc. Japan, 117, 811–814 (2009) [CrossRef] [Google Scholar]
  18. T. Trzepiecinski, M. Gromada, Characterization of mechanical properties of barium titanate ceramics with different grain sizes, Mater. Sci. Pol. 36, 151–156 (2018) [CrossRef] [Google Scholar]
  19. A. Yusefi, N. Parvin, H. Mohammadi, W–Cu functionally graded material: Low temperature fabrication and mechanical characterization, J. Phys. Chem. Solids, 115, 26–35 (2018) [CrossRef] [Google Scholar]
  20. S. Farahmand, M.H. Soorgee, A.H. Monazzah, Evaluating the elastic properties of Al2O3–Al FGMs by longitudinal and transverse ultrasonic bulk waves velocity features, Ceram. Int. 47, 24906–24915 (2021) [CrossRef] [Google Scholar]
  21. M. Nazeer, P. Jana, M.J. Oza, K.G. Schell, E.C. Bucharsky, T. Laha, S. Roy, Ultrasonic study of the elastic properties of functionally graded and equivalent monolithic composites, Mater. Lett. 323 (2022) [Google Scholar]
  22. T. Hoshina, Y. Kigoshi, T. Furuta, H. Takeda, T. Tsurumi, Shrinkage behaviors and sintering mechanism of BaTiO3 ceramics in two-step sintering, Jpn. J. Appl. Phys. 50 (2011) [Google Scholar]
  23. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R: Rep. 63, 127–287 (2009) [CrossRef] [Google Scholar]
  24. B. Li, X. Wang, M. Cai, L. Hao, L. Li, Densification of uniformly small-grained BaTiO3 using spark-plasma-sintering, Mater. Chem. Phys. 82, 173–180 (2003) [CrossRef] [Google Scholar]
  25. D. Bregiroux, J. Cedelle, I. Ranc, C. Barreteau, G. Mata Osoro, G. Wallez, Effect of the sintering method on microstructure and thermal and mechanical properties of zirconium oxophosphate ceramics Zr2O(PO4)2, J. Phys. Chem. Solids, 111, 304–310 (2017) [CrossRef] [Google Scholar]
  26. H. Wang, Z. Lu, Z. Huang, J. Cedelle, Q. Wang, Size effect on hardness for micro-sized and nano-sized YAG transparent ceramics, Ceram. Int. 44, 12472–12476 (2018) [CrossRef] [Google Scholar]
  27. G. Walunj, A. Bearden, A. Patil, T. Larimian, J. Christudasjustus, R.K. Gupta, T. Borkar, Mechanical and tribological behavior of mechanically alloyed Ni-TiC composites processed via spark plasma sintering, Materials (Basel). 13, 1–19 (2020) [Google Scholar]
  28. W. Luan, L. Gao, H. Kawaoka, T. Sekino, K. Niihara, Fabrication and characteristics of fine-grained BaTiO3 ceramics by spark plasma sintering, Ceram. Int. 30, 405–410 (2004) [CrossRef] [Google Scholar]
  29. M.S. Jamil, K.E. Saputro, A. Noviyanto, W.B. Widayatno, A.S. Wismogroho, M.I. Amal, N.T. Rochman, T. Nishimura, Dense and fine-grained barium titanate prepared by spark plasma sintering, J. Phys.: Conf. Ser. 1191 (2019) [Google Scholar]
  30. K.-J. Langenberg, R. Marklein, K. Mayer, Ultrasonic Nondestructive Testing of Materials, CRC Press, 2012 [CrossRef] [Google Scholar]
  31. G. Dickson, Ultrasonic methods for determination of mechanical properties of dental materials, Gaithersburg, MD, 1969 [Google Scholar]
  32. B. Soufyane, F. Allou, M. Takarli, F. Dubois, N. Aurélia, Vers une détermination non destructive par ultrasons des propriétés mécaniques résiduelles des structures de chaussées, 24th Congrès Français de Mécanique, Brest, 2019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.