Issue
Mechanics & Industry
Volume 25, 2024
High fidelity models for control and optimization
Article Number 11
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2024005
Published online 09 April 2024
  1. E. Picard, S. Caro, F. Plestan, F. Claveau, Control solution for a cable-driven parallel robot with highly variable payload, Vol. 5B: 42nd Mechanisms and Robotics Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2018, p. V05BT07A013 [Google Scholar]
  2. L. Gagliardini, M. Gouttefarde, S. Caro, Determination of a dynamic feasible workspace for cable-driven parallel robots, Proceedings in Advanced Robotics, Springer, 2016, pp. 361–370 [Google Scholar]
  3. H. Tan, L. Nurahmi, B. Pramujati, S. Caro, On the reconfiguration of cable-driven parallel robots with multiple mobile cranes, in: 2020 5th International Conference on Robotics and Automation Engineering (ICRAE), 2020, pp. 126–130 [Google Scholar]
  4. U.A. Mishra, M. Metillon, S. Caro, Kinematic stability based afg-rrt path planning for cable-driven parallel robots, in: 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 6963–6969 [Google Scholar]
  5. M. Gouttefarde, J.-F. Collard, N. Riehl, C. Baradat, Geometry selection of a redundantly actuated cable-suspended parallel robot, IEEE Trans. Robotics 31, 501–510 (2015) [Google Scholar]
  6. H. Hussein, J.C. Santos, J.-B. Izard, M. Gouttefarde, Smallest maximum cable tension determination for cable-driven parallel robots, IEEE Trans. Robotics 37, 1186–1205 (2021) [Google Scholar]
  7. P. Lemoine, P.P. Robet, M. Gautier, C. Damien, Y. Aoustin, Haptic control of the parallel robot orthoglide, in: 2019 in Proceedings of the 24nd Congrès Français de Mécanique, CFM, Brest, France, 26–30 August, 2019 [Google Scholar]
  8. A. Levant, Robust exact differentiation via sliding mode technique, Automatica 34, 379–384 (1998) [Google Scholar]
  9. A. Levant, Sliding order and sliding accuracy in sliding mode control, Int. J. Control 58, 1247–1263 (1993) [Google Scholar]
  10. S. Diop, J. Grizzle, P. Moraal, A. Stefanopoulou, Interpolation and numerical differentiation for observer design, in: Proceedings of 1994 American Control Conference – ACC ’94, Vol. 2, 1994, pp. 1329–1333 [Google Scholar]
  11. J.E. Carvajal-Rubio, A.G. Loukianov, J.D. Sanchez-Torres, M. Defoort, On the discretization of a class of homogeneous differentiators, in: 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2019, pp. 1–6 [Google Scholar]
  12. V. Acary, B. Brogliato, Y.V. Orlov, Chattering-free digital sliding-mode control with state observer and disturbance rejection, IEEE Trans. Automatic Control 57, 1087–1101 (2012) [Google Scholar]
  13. M.M. Rasool, B. Brogliato, V. Acary, Time-discretizations ofdiffer-entiators: design of implicit algorithms and comparative analysis, Int. J. Robust Nonlinear Control 31 (2021) [Google Scholar]
  14. X. Yang, X. Xiong, Z. Zou, Y. Lou, S. Kamal, J. Li, Discrete-time multivariable super-twisting algorithm with semi-implicit Euler method, IEEE Trans. Circuits Syst. II: Express Briefs 69, 4443–4447 (2022) [Google Scholar]
  15. X. Xiong, G. Chen, Y. Lou, R. Huang, S. Kamal, Discrete-time implementation of super-twisting control with semi-implicit Euler method, IEEE Trans. Circuits Syst. II: Express Briefs 69, 99–103 (2022) [Google Scholar]
  16. L. Michel, M. Ghanes, F. Plestan, Y. Aoustin, J.-P. Barbot, Semi-implicit Euler discretization for homogeneous observer-based control: one dimensional case, IFAC-PapersOnLine 53, 5135–5140 (2020) [Google Scholar]
  17. L. Michel, S. Selvarajan, M. Ghanes, F. Plestan, Y. Aoustin, J.P. Barbot, An experimental investigation of discretized homogeneous differentiators: pneumatic actuator case, IEEE J. Emerg. Selected Top. Ind. Electron. 2, 227–236 (2021) [Google Scholar]
  18. X. Yang, X. Xiong, Z. Zou, Y. Lou, Semi-implicit Euler digital implementation of conditioned super-twisting algorithm with actuation saturation, IEEE Trans. Ind. Electron. 70, 8388–8397 (2023) [Google Scholar]
  19. M.R. Mojallizadeh, B. Brogliato, A. Polyakov, S. Selvarajan, L. Michel, F. Plestan, M. Ghanes, J.-P. Barbot, Y. Aoustin, A survey on the discrete-time differentiators in closed-loop control systems: experiments on an electro-pneumatic system, Control Eng. Pract. 136, 105546 (2023) [Google Scholar]
  20. L. Michel, M. Ghanes, F. Plestan, Y. Aoustin, J.-P. Barbot, Semi-implicit homogeneous Euler differentiator for a second-order system: validation on real data, in: 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 5911–5917 [Google Scholar]
  21. L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Syst. Control Lett. 19, 467–473 (1992) [Google Scholar]
  22. W. Perruquetti, T. Floquet, E. Moulay, Finite-time observers: application to secure communication, IEEE Trans. Automatic Control 53, 356–360 (2008) [Google Scholar]
  23. M. Ghanes, J.-P. Barbot, L. Fridman, A. Levant, R. Boisliveau, A new varying-gain-exponent-based differentiator/observer: an efficient balance between linear and sliding-mode algorithms, IEEE Trans. Automatic Control 65, 5407–5414 (2020) [Google Scholar]
  24. Y. Hong, J. Huang, Y. Xu, On an output feedback finite-time stabilization problem, IEEE Trans. Automatic Control 46, 305–309 (2001) [Google Scholar]
  25. V. Acary, B. Brogliato, Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems, Syst. Control Lett. 59, 284–293 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.