Open Access
Issue |
Mechanics & Industry
Volume 25, 2024
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/meca/2024023 | |
Published online | 25 November 2024 |
- T. Hey, S. Tansley, K. Tolle, The fourth paradigm: dataintensive scientific discovery (Microsoft Research, Redmond, 2009) [Google Scholar]
- F. Chinesta, E.G. Cueto, E. Abisset-Chavanne, J.L. Duval, F. El Khaldi, Virtual, digital and hybrid twins: a new paradigm in data-based engineering and engineered data, Arch. Comput. Methods Eng. (2019) [Google Scholar]
- Q. Chatenet, A. Tahan, M. Gagnon, J. Chamberland-Lauzon, Numerical model validation using experimental data: application of the area metric on a Francis runner, IOP Conf. Ser.: Earth Environ. Sci. 49 (2016) [Google Scholar]
- C.J. Freitas, The issue of numerical uncertainty, Appl. Math. Modell. 26, 237–248 (2002) [CrossRef] [Google Scholar]
- B. Liu, J. Tang, H. Huang, X.Y. Lu, Deep learning methods for super-resolution reconstruction of turbulent flows, Phys. Fluids 32, 025105 (2020) [CrossRef] [Google Scholar]
- S.L. Brunton, B.R. Noack, Closed-loop turbulence control: progress and challenges, Appl. Mech. Rev. 67, 050801 (2015) [CrossRef] [Google Scholar]
- P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech. 30, 539–578 (1998) [CrossRef] [Google Scholar]
- G. Calzolari, W. Liu, Deep learning to replace, improve, or aid cfd analysis in built environment applications: a review, Build. Environ. 206, 108315 (2021) [CrossRef] [Google Scholar]
- J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech. 41, 453–480 (1970) [CrossRef] [Google Scholar]
- S.B. Pope, Turbulent Flows (IOP Publishing, 2001) [Google Scholar]
- M.J. Berger, M.J. Aftosmis, D. Marshall, S.M. Murman, Performance of a new cfd flow solver using a hybrid programming paradigm, J. Parallel Distrib. Comput. 65, 414–423 (2005) [CrossRef] [Google Scholar]
- P.R. Spalart, A.V. Garbaruk, A new “λ 2” term for the Spalart-Allmaras turbulence model, active in axisymmetric flows, Flow Turbul. Combust. 107, 1–12 (2021) [Google Scholar]
- M. Milano, P. Koumoutsakos, Neural network modeling for near wall turbulent flow, J. Comput. Phys. 182, 1–26 (2002) [CrossRef] [Google Scholar]
- S. Luo, M. Vellakal, S. Koric, V. Kindratenko, J. Cui, Parameter identification of rans turbulence model using physics-embedded neural network, Lecture Notes in Computer Science. Springer International Publishing (2020) pp. 137–149 [Google Scholar]
- S. Yarlanki, B. Rajendran, H. Hamann, Estimation of turbulence closure coefficients for data centers using machine learning algorithms, in 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2012) [Google Scholar]
- J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech. 155–166 (2016) [CrossRef] [MathSciNet] [Google Scholar]
- B.D. Tracey, K. Duraisamy, J.J. Alonso, A machine learning strategy to assist turbulence model development, in 53rd AIAA Aerospace Sciences Meeting (2015) [Google Scholar]
- D. Hintea, J. Brusey, E. Gaura, A study on several machine learning methods for estimating cabin occupant equivalent temperature, in Proceedings of the 12th International Conference on Informatics in Control, Automation an Robotics (2015) [Google Scholar]
- T. Zhang, X. You, Applying neural networks to solve the inverse problem of indoor environment, Indoor Built Environ. 23, 1187–1195 (2013) [Google Scholar]
- Z. Deng, C. Hea, Y. Liu, K.C. Kim, Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework, Phys. Fluids 31 (2019) [Google Scholar]
- K. Fukami, K. Fukagata, K. Taira, Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows, J. Fluid Mech. 909 (2021) [CrossRef] [Google Scholar]
- M. Aliakbari, M. Mahmoudi, P. Vadasza, A. Arzani, Predicting high-fidelity multiphysics data from low-fidelity uid ow and transport solvers using physics-informed neural networks, Int. J. Heat Fluid Flow (2022) [Google Scholar]
- H. Gao, L. Sun, J.-X. Wang, Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels, Phys. Fluids 33 (2021) [Google Scholar]
- H. Bao, J. Feng, N. Dinh, H. Zhang, Deep learning interfacial momentum closures in coarse-mesh cfd two-phase flow simulation using validation data, Int. J. Multiphase Flow 135, 103489 (2021) [CrossRef] [Google Scholar]
- B.N. Hanna, N.T. Dinh, R.W. Youngblood, I.A. Bolotnov, Machine-learning based error prediction approach for coarse-grid computational fluid dynamics (CG-CFD), Prog. Nucl. Energy 118, 103140 (2020) [CrossRef] [Google Scholar]
- C. Villani, Optimal Transport, Old and New (Springer, 2006) [Google Scholar]
- S. Torregrosa, V. Champaney, A. Ammar, V. Herbert, F. Chinesta, Surrogate parametric metamodel based on optimal transport, Math. Comput. Simulat. (2021) [Google Scholar]
- S. Torregrosa, V. Champaney, A. Ammar, V. Herbert, F. Chinesta, Hybrid twins based on optimal transport, Comput. Math. Appl. 127, 12–24 (2022) [CrossRef] [MathSciNet] [Google Scholar]
- W.L. Oberkampf, S.M. De Land, B.M. Rutherford, K.V. Diegert, K.F. Alvin, Error and uncertainty in modeling and simulation, Reliab. Eng. Syst. Saf. 75, 333–357 (2002) [CrossRef] [Google Scholar]
- S. Lind, B. Rogers, P. Stansby, Review of smoothed particle hydrodynamics: towards converged lagrangian flow modelling, Proc. R. Soc. A 476 (2020) [Google Scholar]
- A. Pinkus, N-widths in approximation theory, Springer Science and Business Media, 7 (2012) [Google Scholar]
- A. Kolmogoroff, Uber die beste annaherung von funktionen enier gegebenen funktionenklasse, Ann. Math. 107–110 (1936) [CrossRef] [MathSciNet] [Google Scholar]
- G. Peyré, M. Cuturi, Breaking the kilmogorov barrier with nonlinear model reduction, Notic. Am. Math. Soc. 69, 725–733 (2022) [Google Scholar]
- G. Peyré, M. Cuturi, Computational optimal transport, Found. Trends Mach. Learn. 11, 355–607 (2019) [CrossRef] [Google Scholar]
- G. Monge, Memoire sur la théorie des déblais et des remblais, Histoire de L'Academie Royale Des Sciences de Paris (1781), pp. 666–704 [Google Scholar]
- I.S. Duff, J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM J. Matrix Anal. Appl. 22, 973–996 (2000) [Google Scholar]
- L. Kantorovich, On the transfer of masses (in Russian), Doklady Akademii Nauk 37, 227–229 (1942) [Google Scholar]
- S.R. Ahmed, G. Ramm, G. Faltin, Some salient features of the time-averaged ground vehicle wake, SAE Technical Paper, 840300 (1984) [Google Scholar]
- M.D. McKay, W.J. Conover, R.J. Beckman, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21, 239–245 (1979) [MathSciNet] [Google Scholar]
- M. Stein, Large sample properties of simulations using latin hypercube sampling, Technometrics 29, 143–151 (1987) [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.