Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 2
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2023043
Published online 24 January 2024
  1. M.A. Kurgankina, G.S. Nyashina, P.A. Strizhak, Prospects of thermal power plants switching from traditional fuels to coal-water slurries containing petrochemicals, Sci. Total Environ. 671, 568–577 (2019) [CrossRef] [Google Scholar]
  2. J.P. Szybist, R.R. Steeper, D. Splitter, V.B. Kalaskar, J. Pihl, C. Daw, Negative valve overlap reforming chemistry in low-oxygen environments, SAE Int. J. Engines 7, 418–433 (2014) [CrossRef] [Google Scholar]
  3. V.S. Midhun, S. Karthikeyan, S. Krishnan, S.D. Rairikar, K.P. Kavathekar, S.S. Thipse, N.V. Marathe, Development of CNG injection engine to meet future euro-v emission norms for LCV applications, SAE Technical Paper No. 2011 26–0002 [Google Scholar]
  4. D.S. Khatri, P. Rungta, Development and evaluation of a multipoint gas injection system for a passenger car, SAE Technical Paper No. 2008 – 28–0067 [Google Scholar]
  5. G.T. Chala, A.R. Abd Aziz, F.Y. Hagos, Natural gas engine technologies: challenges and energy sustainability issue, Energies 11, 2934 (2018) [CrossRef] [Google Scholar]
  6. T. Hesterberg, W. Bunn, C. Lapin, An evaluation of criteria for selecting vehicles fueled with diesel or compressed natural gas, Sustain.: Sci. Pract. Policy 5, 20–30 (2009) [Google Scholar]
  7. Y. Matsuo, A. Yanagisawa, Y. Yamashita, A global energy outlook to 2035 with strategic considerations for Asia and Middle East energy supply and demand interdependencies, Energy Strateg. Rev. 2, 79–91 (2013) [CrossRef] [Google Scholar]
  8. T. Cai, D. Zhao, Effects of fuel composition and wall thermal conductivity on thermal and NOx emission performances of an ammonia/hydrogen-oxygen micro-power system, Fuel Process. Technol. 209, 106527 (2020) [CrossRef] [Google Scholar]
  9. Y. Sun, T. Cai, M. Shahsavari, D. Sun, X. Sun, D. Zhao, B. Wang, RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model, Chinese J. Aeronaut. 34, 17–27 (2021) [CrossRef] [Google Scholar]
  10. T. Cai, D. Zhao, Y. Sun, S. Ni, W. Li, D. Guan, B. Wang, Evaluation of NOx emissions characteristics in a CO2-free micro-power system by implementing a perforated plate, Renew. Sust. Energ. Rev. 145, 111150 (2021) [CrossRef] [Google Scholar]
  11. B. Deng, Z. Chen, C. Sun, S. Zhang, W. Yu, M. Huang, K. Hou, J. Ran, L. Zhou, C. Chen, X. Pan, Key design and layout factors influencing performance of three-way catalytic converters: experimental and semidecoupled numerical study under real-life driving conditions, J. Clean. Prod. 425, 138993 (2023) [CrossRef] [Google Scholar]
  12. T.W. Hesterberg, C.A. Lapin, W.B. Bunn, A comparison of emissions from vehicles fueled with diesel or compressed natural gas, Environ. Sci. Technol. 42, 6437–6445 (2008) [CrossRef] [PubMed] [Google Scholar]
  13. E.R. Jayaratne, Z.D. Ristovski, N. Meyer, L. Morawska, Particle and gaseous emissions from compressed natural gas and ultralow sulphur diesel-fuelled buses at four steady engine loads, Sci. Total Environ. 407, 2845–2852 (2009) [CrossRef] [Google Scholar]
  14. V.N. Gamezo, R.K. ZipfJr, M.J. Sapko, W.P. Marchewka, K.M. Mohamed, E.S. Oran, D.A. Kessler, E.S. Weiss, J.D. Addis, F.A. Karnack, D.D. Sellers, Detonability of natural gas-air mixtures, Combust. Flame 159, 870–881 (2012) [CrossRef] [Google Scholar]
  15. J.C. Peters, Natural gas and spillover from the US Clean Power Plan into the Paris Agreement, Energ. Policy 106, 41–47 (2017) [CrossRef] [Google Scholar]
  16. S.H. Pourhoseini, R. Asadi, An experimental study on thermal and radiative characteristics of natural gas flame in different equivalence ratios by chemiluminescence and IR photography methods, J. Nat. Gas Sci. Eng. 40, 126–131 (2017) [CrossRef] [Google Scholar]
  17. R. Aloui, M.S.B. Aïssa, S. Hammoudeh, D.K. Nguyen, Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management, Energ. Econ. 42, 332–342 (2014) [CrossRef] [Google Scholar]
  18. R.Z. Ríos-Mercado, C. Borraz-Sánchez, Optimization problems in natural gas transportation systems: a state-of-the-art review, Appl. Energ. 147, 536–555 (2015) [CrossRef] [Google Scholar]
  19. F. Zhou, J. Fu, D. Li, J. Liu, C.F. Lee, Y. Yin, Experimental study on combustion, emissions and thermal balance of high compression ratio engine fueled with liquefied methane gas, Appl. Therm. Eng. 161, 114125 (2019) [CrossRef] [Google Scholar]
  20. H. X, J. Fu, F. Zhou, J. Yu, J. Liu, Z. Meng, Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME), Energy 284, 128544 (2023) [CrossRef] [Google Scholar]
  21. L. Zhu, Z. He, Z. Xu, X. Lu, J. Fang, W. Zhang, Z. Huang, In-cylinder thermochemical fuel reforming (TFR) in a spark-ignition natural gas engine, P. Combust. Inst. 36, 3487–3497 (2017) [CrossRef] [Google Scholar]
  22. B. Deng, Q. Li, Y. Chen, M. Li, A. Liu, J. Ran, Y. Xu, X. Liu, J. Fu, R. Feng, The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions, Energy 169, 1202–1213 (2019) [CrossRef] [Google Scholar]
  23. S.A. Sobiesiak, S. Zhang, The first and second law analysis of spark ignition engine fuelled with compressed natural gas, SAE Technical Paper No. 2003 – 01–3091 [Google Scholar]
  24. P.L. Mtui, P.G. Hill, Ignition delay and combustion duration with natural gas fueling of diesel engines, SAE Technical Paper No. 961933 (1996) [Google Scholar]
  25. R. Tilagone, G. Monnier, A. Chaouche, Y. Baguelin, S. De Chauveron, Development of a high efficiency, low emission SI-CNG bus engine, SAE Technical Paper No. 961080 (1996) [Google Scholar]
  26. T. Kato, K. Saeki, H. Nishide, T. Yamada, development of CNG fueled engine with lean burn for small size commercial van, JSAE Rev. 22, 365–368 (2000) [Google Scholar]
  27. U. Kesgin, Effect of turbocharging system on the performance of a natural gas engine, Energ. Convers. Manage. 46, 11–32 (2005) [CrossRef] [Google Scholar]
  28. U. Kesgin, Efficiency improvement and NOx emission reduction potentials of two‐stage turbocharged Miller cycle for stationary natural gas engines, Int. J. Energ. Res. 29, 189–216 (2005) [CrossRef] [Google Scholar]
  29. M. Altosole, G. Benvenuto, U. Campora, F. Silvestro, G. Terlizzi, Efficiency improvement of a natural gas marine engine using a hybrid turbocharger, Energies 11, 1924 (2018) [CrossRef] [Google Scholar]
  30. K. Luo, Y. Huang, Z. Han, Y. Li, Y. Shi, W. Liu, C. Tang, Low-speed performance compensation of a turbocharged natural gas engine by intake strategy optimization, Fuel 324, 124748 (2022) [CrossRef] [Google Scholar]
  31. S. Rousseau, B. Lemoult, M. Tazerout, Combustion characterization of natural gas in a lean burn spark-ignition engine, P. I. Mech. Eng. D-J. Aut. 213, 481–489 (1999) [CrossRef] [Google Scholar]
  32. L. Ben, N. Raud-Ducros, R. Truquet, G. Charnay, Influence of air/fuel ratio on cyclic variation and exhaust emission in natural gas SI engine, SAE Technical Paper No. 1999 – 01–2901 [Google Scholar]
  33. U. Kesgin, Effect of turbocharging system on the performance of a natural gas engine, Energ. Convers. Manage. 46, 11–32 (2005) [CrossRef] [Google Scholar]
  34. Q. Tang, J. Fu, J. Liu, F. Zhou, X. Duan, Study of energy-saving potential of electronically controlled turbocharger for internal combustion engine exhaust gas energy recovery, ASME J. Eng. Gas Turb. Power 138 (2016) [CrossRef] [PubMed] [Google Scholar]
  35. K.S. Hoyer, M. Sellnau, J. Sinnamon, H. Husted, Boost system development for gasoline direct-injection compression-ignition (GDCI), SAE Int. J. Engines 6, 815–826 (2013) [CrossRef] [Google Scholar]
  36. C. Chadwell, T. Alger, C. Roberts, S. Arnold, Boosting simulation of high efficiency alternative combustion mode engines, SAE Int. J. Engines 4, 375–393 (2011) [CrossRef] [Google Scholar]
  37. M. Özkan, D.B. Özkan, O. Özener, H. Yılmaz, Experimental study on energy and exergy analyses of a diesel engine performed with multiple injection strategies: effect of pre-injection timing, Appl. Therm. Eng. 53, 21–30 (2013) [CrossRef] [Google Scholar]
  38. Q. Tang, J. Fu, J. Liu, B. Boulet, L. Tan, Z. Zhao, Comparison and analysis of the effects of various improved turbocharging approaches on gasoline engine transient performances, Appl. Therm. Eng. 93, 797–812 (2016) [CrossRef] [Google Scholar]
  39. V. De Bellis, S. Marelli, F. Bozza, M. Capobianco, 1D simulation and experimental analysis of a turbocharger turbine for automotive engines under steady and unsteady flow conditions, Energy Procedia 45, 909–918 (2014) [CrossRef] [Google Scholar]
  40. F. Payri, J. Benajes, M. Reyes, Modelling of supercharger turbines in internal-combustion engines, Int. J. Mech. Sci. 38, 853–869 (1996) [CrossRef] [Google Scholar]
  41. A.V. Passar, D.V. Tymoshenko, E.V. Faleeva, Application of a new design and calculation technology for improving the blading section of the engine with turbine supercharger, in: Defect and Diffusion Forum, Khabarovsk, Russia, 2019 [Google Scholar]
  42. M. Yang, Y. Gu, K. Deng, Z. Yang, S. Liu, Influence of altitude on two-stage turbocharging system in a heavy-duty diesel engine based on analysis of available flow energy, Appl. Therm. Eng. 129, 12–21 (2018) [CrossRef] [Google Scholar]
  43. J. Wahlström, L. Eriksson, Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics, P. I. Mech. Eng. D-J. Aut. 225, 960–986 (2011) [CrossRef] [Google Scholar]
  44. J.B. Heywood, Internal combustion engine fundamentals, 1aª Edição. Estados Unidos 25, 1117–1128 (1998) [Google Scholar]
  45. GB/T 23341.2-2009, Turbochargers—Part 2:Test methods [S] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.