Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 1
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2023042
Published online 22 January 2024
  1. H. Xu, A. Kahraman, N.E. Anderson, D.G. Maddock, Prediction of mechanical efficiency of parallel-axis gear pairs, ASME J. Mech. Des. 129, 58–68 (2007) [Google Scholar]
  2. D. Miler, M. Hoic, Optimisation of cylindrical gear pair − a review, Mech. Mach. Theory 156, 104156 (2021) [CrossRef] [Google Scholar]
  3. O. Buiga, C.O. Popa, Optimal mass design of a single-stage helical gear unit with genetic algorithms, Proc. Rom. Acad., Ser. A 13, 243–250 (2012) [Google Scholar]
  4. T.H. Chong, I. Bae, G.J. Park, A new and generalized methodology to design multi-stage gear drives by integrating the dimensional and the configuration design process, Mech. Mach. Theory 37, 295–310 (2002) [CrossRef] [Google Scholar]
  5. R.C. Sanghvi, A.S. Vashi, H. Patolia, R.G. Jivani, Multi-objective optimization of two-stage helical gear train using NSGA-II, J. Optim. 2014, 670297 (2014) [Google Scholar]
  6. Q. Yao, Multi-objective optimization design of spur gear based on NSGA-II and decision making, Adv. Mech. Eng. 11, 1–8 (2019) [Google Scholar]
  7. S. Padmanabhan, S. Ganesan, M. Chandrasekaran, V. Srinivasa Raman, Gear pair design optimization by genetic algorithm and FEA, in: Proceedings of the International Conference on Frontiers in Automobile and Mechanical Engineering F IEEE, 2010, pp. 396–402 [Google Scholar]
  8. R. Li, T. Chang, J. Wang, X. Wei, J. Wang, Multi-objective optimization design of gear reducer based on adaptive genetic algorithms, in: International Electronic Conference on Computer Science, 2008, pp. 273–277 [Google Scholar]
  9. M. Patil, P. Ramkumar, K. Shankar, Multi-objective optimization of the two-stage helical gear box with tribological constraints, Mech. Mach. Theory 138, 38–57 (2019) [CrossRef] [Google Scholar]
  10. A. Carbonelli, J. Perret-Liaudet, E. Rigaud, A. Le Bot, Particle swarm optimization as an efficient computational method in order to minimize vibrations of multimesh gears transmission, Adv. Acoust. Vib. 2011, 195642 (2011) [Google Scholar]
  11. M.S. Tavakoli, D.R. Houser, Optimum profile modifications for the minimization of static transmission errors of spur gears, ASME J. Mech. Des. 108, 86–94 (1986) [Google Scholar]
  12. J.A. Korta, D. Mundo, Multi-objective micro-geometry optimization of gear tooth supported by response surface methodology, Mech. Mach. Theory 109, 278–295 (2017) [CrossRef] [Google Scholar]
  13. D. Ghribi, J. Bruyère, P. Velex, M. Octrue, M. Haddar, A contribution to the design of robust profile modifications in spur and helical gears by combining analytical results and numerical simulations, ASME J. Mech. Des. 134, 1–9 (2012) [CrossRef] [Google Scholar]
  14. A. Artoni, M. Gabiccini, M. Guiggiani, A. Kahraman, Multi-objective ease-off optimization of hypoid gears for their efficiency, noise and durability performances, ASME J. Mech. Des. 133, 1–9 (2011) [CrossRef] [Google Scholar]
  15. C.I.L. Park, Multi-objective optimization of the tooth surface in helical gears using design of experiment and the response surface method, J. Mech. Sci. Technol. 24, 823–829 (2010) [CrossRef] [Google Scholar]
  16. N. Driot, E. Rigaud, J. Sabot, J. Perret-Liaudet, Allocation of gear tolerances to minimize gearbox noise variability, Acta Acust. United Acust. 87, 67–76 (2001) [Google Scholar]
  17. E. Ben Younes, C. Changenet, J. Bruyère, E. Rigaud, J. Perret-Liaudet, Multi-objective optimization of gear unit design to improve efficiency and transmission error, Mech. Mach. Theory 167, 104499 (2022) [CrossRef] [Google Scholar]
  18. ISO 21771, Gears − Cylindrical Involute Gears and Gear Pairs − Concept and Geometry, 2007 [Google Scholar]
  19. J. Durand De Gevigney, C. Changenet, F. Ville, P. Velex, Thermal modelling of a back-to-back gearbox test machine: application to the FZG test rig, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 226, 501–515 (2012) [CrossRef] [Google Scholar]
  20. C. Changenet, X. Oviedo-Marlot, P. Velex, Power loss predictions in geared transmissions using thermal networks-applications to a six-speed manual gearbox, J. Mech. Des. Trans. ASME 128, 618–625 (2006) [CrossRef] [Google Scholar]
  21. P. Velex, M. Maatar, A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour, J. Sound Vib. 191, 629–660 (1996) [CrossRef] [Google Scholar]
  22. M. Harrison, Vehicle Refinement: Controlling Noise and Vibration in Road Vehicles, Elsevier, 2004 [Google Scholar]
  23. M.P. Norton, D.G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, Cambridge University Press, 2003 [Google Scholar]
  24. C. Lesueur, Rayonnement Acoustique des Structures, Eyrolles, Paris, France, 1988 [Google Scholar]
  25. D. Fritze, S. Marburg, H.J. Hardtke, Estimation of radiated sound power: a case study on common approximation methods, Acta Acust. United Acust. 95, 833–842 (2009) [CrossRef] [Google Scholar]
  26. S.P. Radzevich, Dudley's Handbook of Practical Gear Design and Manufacture, 2012, pp. 1–878 [Google Scholar]
  27. ISO 6336, Calculation of Load Capacity of Spur and Helical Gears, 1996 [Google Scholar]
  28. Y. Yusoff, M.S. Ngadiman, A.M. Zain, Overview of NSGA-II for optimizing machining process parameters, Proc. Eng. 15, 3978–3983 (2011) [CrossRef] [Google Scholar]
  29. K. Deb, T. Goel, Controlled elitist non-dominated sorting genetic algorithms for better convergence, in: International Conference of Evolutionary Multi-Criterion Optimization, 2001, pp. 67–81 [CrossRef] [Google Scholar]
  30. B.R. Höhn, K. Michaelis, A. Wimmer, Low loss gears, Am. Gear Manuf. Assoc. Tech. Paper 05FTM 11, 11 (2005) [Google Scholar]
  31. B.R. Höhn, Improvements on noise reduction and efficiency of gears, Meccanica 45, 425–437 (2010) [CrossRef] [Google Scholar]
  32. P. Velex, F. Ville, An analytical approach to tooth friction losses in spur and helical gears—influence of profile modifications, J. Mech. Des. 131, 101008 (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.