Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 27
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2024024
Published online 21 October 2024
  1. S. Bouchard, Géométrie des Robots Parallèles Entraînés par des Câbles (2008), p. 248 [Google Scholar]
  2. C. Gosselin, S. Bouchard, A gravity-powered mechanism for extending the workspace of a cable-driven parallel mechanism: application to the appearance modelling of objects, Int. J. Autom. Technol. 4, 372–379 (2010) [CrossRef] [Google Scholar]
  3. R. Chellal, L. Cuvillon, E. Laroche, Model identification and vision-based H position control of 6-DoF cable-driven parallel robots, Int. J. Control 90, 684–701 (2017) [CrossRef] [Google Scholar]
  4. R. Bostelman, J. Albus, N. Dagalakis, A. Jacoff, J. Gross, Applications of the NIST Robocrane, Robot. Manufactur. 5 (1994) [Google Scholar]
  5. E. Barnett, C. Gosselin, Large-scale 3D printing with a cable-suspended robot, Additive Manufactur. 7, 27–44 (2015) [CrossRef] [Google Scholar]
  6. S. Kawamura, H. Kino, C. Won, High-speed manipulation by using parallel wire-driven robots, Robotica 18, 13–21 (2000) [CrossRef] [Google Scholar]
  7. S. Kawamura, W. Choe, S. Tanaka, H. Kino, Development of an ultrahigh speed robot FALCON using wire drive systems, J. Robotics Soc. Jpn. (1997) [Google Scholar]
  8. X. Weber, L. Cuvillon, J. Gangloff, Active vibration canceling of a cable-driven parallel robot in modal space, in 2015 IEEE International Conference on Robotics and Automation (ICRA) (2015), p. 1599–1604 [Google Scholar]
  9. S. Baklouti, E. Courteille,P. Lemoine, S. Caro, Input-Shaping for Feed-Forward Control of Cable-Driven Parallel Robots, arXiv:2010.11676 [physics] (2020). doi: 10.1115/1.4048354 [Google Scholar]
  10. B. Zi, B.Y. Duan, J.L. Du, H. Bao, Dynamic modeling and active control of a cable-suspended parallel robot, Mechatronics 18, 1–12 (2008) [CrossRef] [Google Scholar]
  11. X. Weber, L. Cuvillon, J. Gangloff, Active vibration canceling of a cable-driven parallel robot using reaction wheels, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), p. 1724–1729 [Google Scholar]
  12. M. Lesellier, L. Cuvillon, J. Gangloff, M. Gouttefarde, An active stabilizer for cable-driven parallel robot vibration damping, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018), p. 5063–5070 [Google Scholar]
  13. M. Rushton, Vibration Control in Cable Robots Using a Multi-Axis Reaction System (2016). Available from: https://uwspace.uwaterloo.ca/handle/10012/10945 [Google Scholar]
  14. M. Rushton, A. Khajepour, Transverse vibration control in planar cable-driven robotic manipulators, in Cable-Driven Parallel Robots, edited by C. Gosselin, P. Cardou, T. Bruckmann, A. Pott (Springer International Publishing, Cham, 2018), pp. 243–253 [CrossRef] [Google Scholar]
  15. F. Bossens, Amortissement actif des structures câblées: de la théorie à l'implémentation, Université Libre de Bruxelles, Brussels, Belgium (2001) [Google Scholar]
  16. Y. Achkire, A. Preumont, Active tendon control of cable-stayed bridges, Earthquake Eng. Struct. Dyn. 25, 585–597 (1996) [CrossRef] [Google Scholar]
  17. A. Preumont, M. Voltan, A. Sangiovanni, B. Mokrani, D. Alaluf, Active tendon control of suspension bridges, Smart Struct. Syst. 18, 31–52 (2016) [CrossRef] [Google Scholar]
  18. D. Mohammadshahi, Dynamics and Control of Cables in Cable-Actuated Systems (2013), p. 92 [Google Scholar]
  19. M. Verma et al., Dynamic stabilization of thin aperture light collector space telescope using active rods, JATIS 6, 014002 (2020) [Google Scholar]
  20. A. Preumont, A. François, F. Bossens, A. Abu-Hanieh, Force feedback versus acceleration feedback in active vibration isolation, J. Sound Vibrat. 257, 605–613 (2002) [CrossRef] [Google Scholar]
  21. A. Preumont, Vibration Control of Active Structures: An Introduction (Springer, 2018) [Google Scholar]
  22. B. de Marneffe, Active and passive vibration isolation and damping via shunted transducers, Faculté des Sciences Appliquées, Université Libre de Bruxelles, 2007. Disponible sur: https://scmero.ulb.ac.be/Publications/Thesis/de_Marneffe07.pdf [Google Scholar]
  23. S. Chesné, A. Milhomem, C. Collette, Enhanced damping of flexible structures using force feedback, J. Guidance Control Dyn. 39, 1654–1658 (2016) [CrossRef] [Google Scholar]
  24. F. Lacaze, A. Paknejad, D. Remond, S. Chesne, Improved integral force feedback controllers for lightweight flexible structures, J. Vibr. Control 1077546320974549 (2020) [Google Scholar]
  25. D. Gueners, H. Chanal, B.C. Bouzgarrou, Stiffness optimization of a cable driven parallel robot for additive manufacturing, in 2020 IEEE International Conference on Robotics and Automation (ICRA) (2020), pp. 843–849 [Google Scholar]
  26. X. Diao, O. Ma, Vibration analysis of cable-driven parallel manipulators, Multibody Syst. Dyn. 21, 347–360 (2009) [CrossRef] [Google Scholar]
  27. A. Glumineau, J. de León Morales, Robust Synchronous Motor Controls Designs (PMSM and IPMSM), in Sensorless AC Electric Motor Control: Robust Advanced Design Techniques and Applications, edited by A. Glumineau, J. de León Morales (Springer International Publishing, Cham, 2015), pp. 121–142 [Google Scholar]
  28. R.H. Park, Two-reaction theory of synchronous machines generalized method of analysis-part I, Trans. Am. Inst. Electr. Eng. 48, 716–727 (1929) [CrossRef] [Google Scholar]
  29. P. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust. 15, 70–73 (1967) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.