Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 23
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2024021
Published online 04 October 2024
  1. M. Zarzour, J. Vance, Experimental evaluation of a metal mesh bearing damper, ASME J. Eng. Gas Turbines Power 122, 326–329 (2000) [CrossRef] [Google Scholar]
  2. H. Ao, H. Jiang, W. Wei, A.M. Ulanov, Study on the damping characteristics of MR damper in flexible supporting of turbo-pump rotor for engine, in 1st International Symposium on Systems and Control in Aerospace and Astronautics (2006). pp. 5–622 [Google Scholar]
  3. X.Y. Zheng, Z.Y. Ren, H.B. Bai, Z.B. Wu, Y.S. Guo, Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites, Defence Technol. 2214–9147 (2022) [Google Scholar]
  4. L. San Andrés, T.A. Chirathadam, T. Kim, Measurement of structural stiffness and damping coefficients in a metal mesh foil bearing, ASME. J. Eng. Gas Turbines Power 132, 032503 (2010) [CrossRef] [Google Scholar]
  5. E.M. Al-Khateeb, J.M. Vance, Experimental evaluation of a metal mesh bearing damper in parallel with a structural support, ASME 4, GT-0247 (2001) [Google Scholar]
  6. M. Yanhong, Z. Haixiong, D. Zhang, J. Hong, Experimental investigation on dynamic mechanical behavior of the elastic ring support with metal rubber, ASME 4B, IMECE-62739 (2013) [Google Scholar]
  7. A. Chaturvedi, Recent developments in the field of metal foam-polymer hybrid materials: a brief overview, J. Metals Mater. Minerals 28, 136–140 (2018) [Google Scholar]
  8. H.F. Cheng, F.S. Han, Compressive behavior and energy absorbing characteristic of open cell aluminum foam filled with silicate rubber, Scr. Mater. 49, 583–586 (2003) [CrossRef] [Google Scholar]
  9. J.L. Yu, J.R. Li, S.S. Hu, Strain-rate effect and micro-structural optimization of cellular metals, Mech. Mater. 38, 160–170 (2006) [CrossRef] [Google Scholar]
  10. Y. Liu, X.L. Gong, Compressive behavior and energy absorption of metal porous polymer composite with interpenetrating network structure, Trans. Nonferrous Metals Soc. China 16, 439–443 (2006) [Google Scholar]
  11. D. R.A. Cluff, E. Shahrzad, Compressive properties of a new metal-polymer hybrid material, J. Mater. Sci. 44, 1573–4803 (2009) [Google Scholar]
  12. M. Vesenjak, L. Krstulović-Opara, Z. Ren, Characterization of irregular open-cell cellular structure with silicone pore filler, Polym. Test. 32, 1538–1544 (2013) [CrossRef] [Google Scholar]
  13. I. Duarte, M. Vesenjak, L. Krstulović-Opara, Z. Ren, Crush performance of multifunctional hybrid foams based on an aluminium alloy open-cell foam skeleton, Polym. Test. 67, 246–256 (2018) [CrossRef] [Google Scholar]
  14. Sh. Liu, A. Li, P. Xuan, Mechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compression, Composites Part A 116, 87–97 (2019) [CrossRef] [Google Scholar]
  15. S.C. Pinto, P.A.A.P. Marques, M. Vesenjak, R. Vicente, L. Godinho, L. Krstulović-Opara, I. Duarte, Characterization and physical properties of aluminium foam-polydimethylsiloxane nanocomposite hybrid structures, Compos. Struct. 230, 111521 (2019) [CrossRef] [Google Scholar]
  16. N. Dukhan, N. Rayess, J. Hadley, Characterization of aluminum foam-polypropylene interpenetrating phase composites: flexural test results, Mech. Mater. 42, 134–141 (2010) [CrossRef] [Google Scholar]
  17. C. Hauser, R. Hauser, Vibration damping by metallic composite foams, in 9th Structural Dynamics and Materials Conference (1968). pp. 1968–339 [Google Scholar]
  18. S. Yin, N. Rayess, Characterization of polymer-metal foam hybrids for use in vibration dampening and isolation, Proc. Mater. Sci. 4, 311–316 (2014) [CrossRef] [Google Scholar]
  19. Z. Jiang, F. Wang, J. Yin, S. Gong, Z. Dai, Y. Pang, Y. Xiong, Z. Zhu, Z. Li, Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites, Composites Part B 199, 108266 (2020) [CrossRef] [Google Scholar]
  20. M.J. Cops, Engineered metallic foam for controlling sound and vibration, Boston University Theses & Dissertations, 107–125 (2020). https://open.bu.edu/handle/2144/41014 [Google Scholar]
  21. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progr. Mater. Sci. 46, 559–632 (2001) [CrossRef] [Google Scholar]
  22. D. Koblar, M. Boltežar, Evaluation of the frequency-dependent young's modulus and damping factor of rubber from experiment and their implementation in a finite-element analysis, Exp. Tech. 40, 235–244 (2016) [CrossRef] [Google Scholar]
  23. S. Sim, K.-J. Kim, A method to determine the complex modulus and Poisson's ratio of viscoelastic materials for FEM applications, J. Sound Vibr. 141, 71–82 (1990) [CrossRef] [Google Scholar]
  24. L.J. Gibson, M.F. Ashby, Cellular Solids, 1st edition, Cambridge University Press, Cambridge (1998) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.