Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 22
Number of page(s) 20
DOI https://doi.org/10.1051/meca/2024018
Published online 29 July 2024
  1. M. Paredes, Enhanced formulae for determining both free length and rate of cylindrical compression springs, ASME. J. Mech. Des. 138, (2015) [Google Scholar]
  2. Norme-NF-EN-13906-1, Ressorts hélicoïdaux cylindriques fabriqués à partir de fils ronds et de barres, calcul et conception, partie 1 : Ressorts de compression, AFNOR (2002) [Google Scholar]
  3. IST, Essential Spring Design Training Course (Institute of Spring Technology, Sheffield, United Kingdom, 1980−2005) [Google Scholar]
  4. A.M. Wahl, Mechanical Springs (McGraw-Hill Book Company, Second Edition, 1963) [Google Scholar]
  5. G. Cadet, M. Paredes, A new exhaustive semi-analytical method to calculate stress distribution on the surface of a curved beam with circular cross section, with an application to helical compression springs, Eur. J. Mech. − A (2023) [Google Scholar]
  6. G. Cadet, M. Paredes, H. Orcière, Improved analytical model for cylindrical compression springs not ground considering end behavior of end coils, Mech. Ind. 22, (2021) [Google Scholar]
  7. R. Palaninathan, P.S. Chandrasekharan, Curved beam element stiffness matrix formulation, Comput. Struct. 21, 663–669 (1985) [CrossRef] [Google Scholar]
  8. C.L. Dym, Consistent derivations of spring rates for helical springs, ASME J. Mech. Des. 131, (2009) [Google Scholar]
  9. M. Shimoseki, T. Hamano, and T. Imaizumi, FEM for Springs (Springer-Verlag Berlin, 2003) [CrossRef] [Google Scholar]
  10. F. De Crescenzo and P. Salvini, Influence of coil contact on static behavior of helical compression springs, IOP Conf. Ser.: Mater. Sci. Eng. 1038 (2020) [Google Scholar]
  11. F. Dammak, M. Taktak, S. Abid, A. Dhieb, M. Haddar, Finite element method for the stress analysis of isotropic cylindrical helical spring, Eur. J. Mech. A 24, 1068–1078 (2005) [CrossRef] [Google Scholar]
  12. A.Y. Babenko, B. Soltannia, P.S. Mobarakeh, Solving geometrically nonlinear problem on deformation of a helical spring through variational methods, Int. J. Mech. Appl. 8, 21–24 (2018) [Google Scholar]
  13. Z. Gu, X. Hou, J. Ye, Design and analysis method of nonlinear helical springs using a combining technique: finite element analysis, constrained latin hypercube sampling and genetic programming, J. Mech. Eng. Sci. 235, 5917–5930 (2021) [CrossRef] [Google Scholar]
  14. M. Taktak, F. Dammak, S. Abid, M. Haddar, A mixed-hybrid finite element for three-dimensional isotropic helical beam analysis, Int. J. Mech. Sci. 47, 209–229 (2005) [CrossRef] [Google Scholar]
  15. M. Taktak, F. Dammak, S. Abid, M. Haddar, A finite element for dynamic analysis of a cylindrical isotropic helical spring, J. Mech. Mater. Struct. 3, 641–658 (2008) [CrossRef] [Google Scholar]
  16. R. Provasi, C. d.A. Martins, A three-dimensional curved beam element for helical components modeling, J. Offshore Mech. Arctic Eng. 136 (2014) [CrossRef] [Google Scholar]
  17. A.D. Kelly, C.E. Knight, Helical coil suspension springs in finite element models of compressors, Int. Compress. Eng. Conf. 870 (1992) [Google Scholar]
  18. A.N. Chaudhury, D. Datta, Analysis of prismatic springs of non-circular coil shape and non-prismatic springs of circular coil shape by analytical and finite element methods, J. Comput. Des. Eng. 4, 178–191 (2017) [Google Scholar]
  19. Y. Zhuo, Z. Qi, J. Zhang, G. Wang, A geometrically nonlinear spring element for structural analysis of helical springs, Arch. Appl. Mech. 92, 1789–1821 (2022) [CrossRef] [Google Scholar]
  20. M. Ermis, M.H. Omurtag, Static and dynamic analysis of conical helices based on exact geometry via mixed fem, Int. J. Mech. Sci. 131, 296–304 (2017) [CrossRef] [Google Scholar]
  21. J. Lee, Free vibration analysis of cylindrical helical springs by the pseudospectral method, J. Sound Vibr. 302, 185–196 (2007) [CrossRef] [Google Scholar]
  22. A.R. Udhaya, B. Rajeswari, T. Mugilan, Static structural investigation of helical compression spring utilizing different materials for an automobile suspension system, Mater. Today: Proc. 80, 653–658 (2023) [CrossRef] [Google Scholar]
  23. H.B. Pawar, A.R. Patil, S.B. Zope, Design and analysis of a front suspension coil spring for three wheeler vehicle, Int. J. Innov. Eng. Res. Technol. 3 (2016) [Google Scholar]
  24. S. Kushwah, S. Parekh, M. Mangrola, Optimization of coil spring by finite element analysis method of automobile suspension system using different materials, Mater. Today: Proc. 42, 827–831 (2021) [CrossRef] [Google Scholar]
  25. R. Puff, R. Barbieri, Effect of non-metallic inclusions on the fatigue strength of helical spring wire, Eng. Fail. Anal. 44, 441–454 (2014) [CrossRef] [Google Scholar]
  26. W.G. Jiang, J.L. Henshall, A novel finite element model for helical springs, Finite Elements i Anal. Des. 35, 363–377 (2000) [CrossRef] [Google Scholar]
  27. T.M. Mulla, S.J. Kadam, V.S. Kengar, Finite element analysis of helical coil compression spring for three wheeler automotive front suspension, Int. J. Mech. Ind. Eng. 2, 74–77 (2012) [Google Scholar]
  28. H.B. Pawar, D.D. Desale, Optimization of three wheeler front suspension coil spring, Proc. Manufactur. 20, 428–433 (2018) [CrossRef] [Google Scholar]
  29. H. Font, G. Cadet, M. Paredes, H. Orcière, Enhanced formulae for determining solid height of axially guided compression springs with closed and unground ends, Wire Forming Technol. 25, (2022) [Google Scholar]
  30. M. Bakhshesh, M. Bakhshesh, Optimization of steel helical spring by composite spring, Int. J. Multidiscipl. Sci. Eng. 3, 47–51 (2012) [Google Scholar]
  31. R.R.D.A. Andoko, Coil spring type analysis using the finite element method, IOP Conf. Ser.: Mater. Sci. Eng. (2021) [Google Scholar]
  32. T.A. Jadhav, M.P. Angaj, V.N. Kapatkar, Finite element analysis of helical coil spring with cushioning buffer, Int. J. Eng. Res. Technol. (2019) [Google Scholar]
  33. A. Banerjee, Design and analysis of helical spring profiles in an electric vehicle suspension system using finite element method, Int. J. Adv. Res. Ideas Innov. Technol. (2020) [Google Scholar]
  34. I. Pöllänen, H. Martikka, Optimal re-design of helical springs using fuzzy design and fem, Adv. Eng. Softw. 41, 410–414 (2010) [CrossRef] [Google Scholar]
  35. D. Čakmak, Z. Tomičević, H. Wolf, Ž. Božić, D. Semenski, I. Trapić, Vibration fatigue study of the helical spring in the base-excited inerter-based isolation system, Eng. Fail. Anal. 103, 44–56 (2019) [CrossRef] [Google Scholar]
  36. A. Jain, S. Misra, A. Jindal, P. Lakhian, Structural analysis of compression helical spring used in suspension system, AIP Conf. Proc. (2017) [Google Scholar]
  37. A. Tiwari, K.K. Ray, B. Pyttel, Very high cycle fatigue behavior of helical compression springs: numerical and experimental analysis, Thesis (2012) [Google Scholar]
  38. Y. Wang, C. Soutis, M. Yar, X. Zhou, Modelling corrosion effect on stiffness of automotivesuspension springs, Mater. Des. Process. Commun. 1 (2018) [Google Scholar]
  39. Y. Wang, Q. Wang, Z. Su, Numerical studies on the stiffness of arc elliptical cross-section helical spring subjected to circumference force, Mechanika 27, 327−334 (2021) [CrossRef] [Google Scholar]
  40. J. Ke, Z.Y. Wu, Y.S. Liu, Z. Xiang, X.D. Hu, Design method, performance investigation and manufacturing process of composite helical springs: a review, Compos. Struct. 252 (2020) [Google Scholar]
  41. L. Wu, L. Chen, H. Fu, Q. Jiang, X. Wu, Y. Tang, Carbon fiber composite multistrand helical springs with adjustable spring constant: design and mechanism studies, J. Mater. Res. Technol. 9, 5067–5076 (2020) [CrossRef] [Google Scholar]
  42. Y. Zhang, C. Yu, D. Song, Y. Zhu, Q. Kan, G. Kang, Solid-state cooling with high elastocaloric strength and low driving force via niti shape memory alloy helical springs: experiment and theoretical model, Mech. Mater. 178 (2023) [Google Scholar]
  43. Q. Jiang, Y. Qiao, F. Zhao, Z. Pan, X. Wu, L. Wu, H. Fu, Composite helical spring with skin-core structure:structural design and compression propertyevaluation, Soc. Plast. Eng. Polym. Compos. 42, 1292–1304 (2021) [Google Scholar]
  44. B. Pyttel, K.K. Ray, I. Brunner, A. Tiwari, S.A. Kaoua, Investigation of probable failure position in helical compression springs used in fuel injection system of diesel engines, IOSR J. Mech. Civil Eng. 2 (2012) [Google Scholar]
  45. M. Baghani, R. Naghdabadi, J. Arghavani, A semi-analytical study on helical springs made of shape memory polymer, Smart Mater. Struct. 21 (2012) [Google Scholar]
  46. A.F. Saleeb, B. Dhakal, M.S. Hosseini, S.A. Padula II, Large scale simulation of niti helical spring actuators under repeated thermomechanical cycles, Smart Mater. Struct. 22 (2013) [Google Scholar]
  47. X. Nong, W. Feng, J. Gao, C. Shi, N. Zhao, Stress relaxation constitutive relations and finite element analysis of t9a helical compression spring, Mater. Trans. 62, 962–967 (2021) [CrossRef] [Google Scholar]
  48. R. Mirzaeifar, R. DesRoches, A. Yavari, A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs, Int. J. Solids Struct. 48, 611–624 (2011) [CrossRef] [Google Scholar]
  49. C. ElMtili, A. Khamlichi, L. Hessissen, H.M.W. Badar, Force-displacement relationships for niti alloy helical springs by using ansys: superelasticity and shape memory effect, Int. Rev. Appl. Sci. Eng. 13 (2022) [Google Scholar]
  50. M. Muralidharan, R. Aravinth, J. Gafferkhan, R. Gandhi, Comparative design and analysis of helical and wave spring, Int. J. Eng. Technol. 7, 353–356 (2018) [CrossRef] [Google Scholar]
  51. H.A. Rasol, M.R. Ismail, A.A. Najam, Study the possibility of using fiber and polymer composite materials in helical spring manufacturing, IOP Conf. Ser.: Mater. Sci. Eng. (2021) [Google Scholar]
  52. S.N. Khurd, P.P. Kulkarni, S.D. Katekar, A.M. Chavan, Analysis of two wheeler suspension spring by using fea for different materials, Int. Res. J. Eng. Technol. 3, 833–839 (2016) [Google Scholar]
  53. A.I. Razooqi, H.A. Ameen, K.K.M. Mashloosh, Compression and impact characterization of helical and slotted cylinder springs, Int. J. Eng. Technol. 3, 268–278 (2014) [CrossRef] [Google Scholar]
  54. H.B. Pawar, A.R. Patil, S.B. Zope, Analysis and optimization of a helical compression coil spring used for twv, Int. J. Adv. Res. Innov. Ideas Educ. (2016) [Google Scholar]
  55. L. DelLlano-Vizcaya, C. Rubio-González, G. Mesmacque, T. Cervantes-Hernández, Multiaxial fatigue and failure analysis of helical compression springs, Eng. Fail. Anal. 13, 1303–1313 (2006) [CrossRef] [Google Scholar]
  56. C. Stephen, R. Selvam, S. Suranjan, A comparative study of steel and composite helical springs using finite element analysis, Adv. Sci. Eng. Technol. Int. Conf. (ASET) (2019) [Google Scholar]
  57. M.R. Khudhair, Failure analysis of compression helical spring used in the suspension system by FEA, Int. J. Mech. Product. Eng. Res. Dev. 9 (2019) [Google Scholar]
  58. R. Sreenivasulu, N.Y. Krishna, M. Sukumar, O.N.G. Basha, N. ArunKumar, K. Heamanth, M.V. Krishna, Modeling and analysis of helical springs using catia-v5r19 and ansys 16.0, AKGEC Int. J. Technol. 11, 41–50 (2020) [Google Scholar]
  59. D. Čakmak, Ž. Božić, H. Wolf, N. Alujević, Simultaneous vibration and fatigue optimization of an inerter-based vibration isolation system, Engineering (2017) [Google Scholar]
  60. L. Hou, Y. Hu, Gurson-tvergraad-needleman model-based damage analyses of stainless steel springs at high temperature, J. Phys.: Conf. Ser. (2023) [Google Scholar]
  61. P. Sedlák, M. Frost, A. Kruisová, K. Hiřmanová, L. Heller, P. Šittner, Simulations of mechanical response of superelastic niti helical spring and its relation to fatigue resistance, J. Mater. Eng. Perform. 23, 2591–2598 (2014) [CrossRef] [Google Scholar]
  62. Siddharth, D. Yadav, S. Lata, Design development and analysis of cylindrical spring with variable pitch for two wheelers, Mater. Today: Proc. 47, 3105–3111 (2021) [CrossRef] [Google Scholar]
  63. Y. Wang, C. Soutis, L. Gagliardi, A finite element and experimental analysis of durability tested springs, MATEC Web Conf. 165 (2018) [Google Scholar]
  64. R. Mehrabi, M.R.K. Ravari, Simulation of superelastic sma helical springs, Smart Struct. Syst. 16, 183–194 (2015) [Google Scholar]
  65. S. Lutz, Kennlinie und eigenfrequenzen von schraubendruckfedern, Dissertation TU Ilmenau (2000) [Google Scholar]
  66. U. Kletzin, H.J. Schorcht, K. Zimmermann, H.K.U. Liebers, Finite-Elemente-basiertes Entwurfssystem für Federn und Federanordnungen, Technische Universität Ilmenau, Institut für Maschinenelemente und Konstruktion (2000) [Google Scholar]
  67. A. Roychoudhury, A. Banerjee, S. Dutt, S. Sinha, Studying the effect of electroless nickel coating on helical compression springs by finite element analysis, Int. J. Eng. Res. Technol. 6 (2017) [Google Scholar]
  68. T.M. Mulla, Fatigue life estimation of helical coil compression spring used in front suspension of a three wheeler vehicle, Proc. Mod. Era Res. Mech. Eng. (2016) [Google Scholar]
  69. K. Sathishkumar, G. Dinesh, Design and material analysis of a suspension system in scooter by using finite element analysis method, Int. Res. J. Multidiscip. Technov. 1, 25–37 (2019) [Google Scholar]
  70. A.S. Karad, P.D. Sonawwanay, C.Y. Bachhav, Finite element analysis of coil spring by using carbon fibre, carbon steel and epoxy resin materials, Mater. Today: Proc. (2023) [Google Scholar]
  71. V. Fegade, U. Ragavendran, M. Ramachandran, Numerical investigation of hybrid helical spring for total deformation and von mises analysis, Int. J. Mech. Product. Eng. Res. Dev. 181–186 (2018) [Google Scholar]
  72. R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, Concepts and applications of finite element analysis, John Wiley and Sons, INC. (1974) [Google Scholar]
  73. L.A. Barba, Terminologies for reproducible research, Comput. Sci. (2018) [Google Scholar]
  74. F.C.Y. Benureau, N.P. Rougier, Re-run, repeat, reproduce, reuse, replicate: transforming code into scientific contributions, Comput. Sci. (2018) [Google Scholar]
  75. V. Stodden, Reproducing statistical results, Annu. Rev. Stat. Appl. 2, 1–19 (2015) [CrossRef] [Google Scholar]
  76. S. Tejesh, T. Srinath, Design and analysis of helical compression spring, Int. J. Innov. Res. Adv. Stud. 9 (2022) [Google Scholar]
  77. K. Sataynarayana, T. Ugesh, B. Gowri, D. Sai Adhitya Ganesh, K. Bharath, Design and static analysis on a helical spring for two wheeler, J. Compos. Theory 13 (2020) [Google Scholar]
  78. P. Ravinder Reddy, V. Mukesh Reddy, Determination of buckling loads of wave spring using ansys, Int. J. Res. Eng. Sci. 3, 48–56 (2015) [Google Scholar]
  79. I.A. Magomedov, Z.S. Sebaeva, Comparative study of finite element analysis software packages, J. Phys.: Conf. Ser. 1515 (2020) [Google Scholar]
  80. Massachusetts Institute of Technology, Abaqus documentation 2017, https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm, (2023) [Google Scholar]
  81. G. Yazar, Design and analysis of helical coil spring forms for independent suspensions of automobiles, PhD Thesis, Graduate School of Natural and Applied Sciences (2015) [Google Scholar]
  82. G. Prathap, The poor bending response of the four-node plane stress quadrilateral, Int. J. Numer. Methods Eng. 21, 825–835 (1985) [CrossRef] [Google Scholar]
  83. D.P. Flanagan, T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng. 17, 679–706 (1981) [CrossRef] [Google Scholar]
  84. T. Belytschko, J.S.J. Ong, W.K. Liu, J.M. Kennedy, Hourglass control in linear and nonlinear problems, Comput. Methods Appl. Mech. Eng. 43, 251–276 (1984) [CrossRef] [Google Scholar]
  85. W. Lowrie, V.S. Lukin, U. Shumlak, A priori mesh quality metric error analysis applied to a high-order finite element method, J. Comput. Phys. 230, 5564–5586 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  86. P.M. Knupp, Remarks on mesh quality, American Institute of Aeronautics and Astronautics Paper − 45th Aerospace Sciences Meeting and Exhibit, Reno, NV (2007) [Google Scholar]
  87. J.R. Sack, J. Urrutia, Handbook of computational geometry (Elsevier Science B.V., North-Holland, 2000) [Google Scholar]
  88. G. Cadet, M. Paredes, H. Orciere, Improved design of single-layered wire strand for combined tensile and crimping application with meshing optimization, DYNA 98, 274–281 (2023) [CrossRef] [Google Scholar]
  89. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Volume 2: Solid Mechanics (Butterworth Heinemann, Oxford, 2000) [Google Scholar]
  90. W.H. Cai, J.M. Zhan, Y.Y. Luo, User-intervened structured meshing methods and applications for complex flow fields based on multiblock partitioning, J. Comput. Des. Eng. 8 (2020) [Google Scholar]
  91. C.G. Armstrong, H.J. Fogg, C.M. Tierney, T.T. Robinson, Common themes in multi-block structured quad/hex mesh generation, Proc. Eng. 124, 70–82 (2015) [CrossRef] [Google Scholar]
  92. H.J. Fogg, L. Sun, J.E. Makem, C.G. Armstrong, T.T. Robinson, Singularities in structured meshes and cross-fields, Comput. Aided Des. 105, 11–25 (2018) [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.