Open Access
Issue
Mechanics & Industry
Volume 25, 2024
Article Number 21
Number of page(s) 16
DOI https://doi.org/10.1051/meca/2024016
Published online 05 July 2024
  1. A. Gordiychuk, M. Svanera, S. Benini, P. Poesio, Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator, Exp. Therm. Fluid Sci. 70, 51–60 (2016) [CrossRef] [Google Scholar]
  2. A. Mosavi, S. Shamshirband, E. Salwana, K.W. Chau, J.H.M. Tah, Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning, Eng. Appl. Comp. Fluid 13, 482–492 (2019) [Google Scholar]
  3. S. Shamshirband, M. Babanezhad, A. Mosavi, N. Nabipour, E. Hajnal, L. Nadai, K.W. Chau, Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants, Eng. Appl. Comp. Fluid. 14, 367–378 (2020) [Google Scholar]
  4. L. Fang, W. Li, Q. Li, Z. Wang, Numerical investigation of the cavity shedding mechanism in a Venturi reactor, Int. J. Heat Mass Transf. 156, 119835 (2020) [CrossRef] [Google Scholar]
  5. V.M. Tikhomirov, On the breakage of drops in a turbulent flow, in Selected Works of Kolmogorov A.N. (1991) [Google Scholar]
  6. Y. Nomura, S.I. Uesawa, A. Kaneko, Y. Abe, Study on bubble breakup mechanism in a venturi tube, in: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference ASME (2011), pp. 2533–2540 [CrossRef] [Google Scholar]
  7. L. Zhao, Z. Mo, L. Sun, G. Xie, H. Liu, M. Du, J. Tang, A visualized study of the motion of individual bubbles in a Venturi-type bubble generator, Prog. Nucl. Energ. 97, 74–89 (2017) [CrossRef] [Google Scholar]
  8. L. Zhao, L. Sun, Z. Mo, J. Tang, L. Hu, J. Bao, An investigation on bubble motion in liquid flowing through a rectangular Venturi channel, Exp. Therm. Fluid Sci. 97, 48–58 (2018) [CrossRef] [Google Scholar]
  9. S.I. Uesawa, A. Kaneko, Y. Nomura, Y. Abe, Study on bubble breakup behavior in a Venturi tube, Multiphase Sci. Technol. 24, 257–277 (2012) [CrossRef] [Google Scholar]
  10. A. Fujiwara, K. Okamoto, K. Hashiguchi, J. Peixinho, S. Takagi, Y. Matsumoto, Bubble breakup phenomena in a venturi tube, in 2007 Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference ASME (2007), pp. 553–560 [CrossRef] [Google Scholar]
  11. Y. Song, D. Wang, J. Yin, J. Li, K. Cai, Y. Qian, W. Liu, H. Li, Study of bubble breakup mechanism in a venturi bubble generator applied in TMSR, in 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics ACM (2017) [Google Scholar]
  12. G.D. Ding, J.Q. Chen, Z.L. Li, X.L. Cai, Numerical simulation on the motion and breakup characteristics of a single bubble in a Venturi channel, Ind. Eng. Chem. Res. 60, 14613–14624 (2021) [CrossRef] [Google Scholar]
  13. X. Ju, L. Sun, W. Tang, H. Yun, C. Yan, Analysis of the operating characteristics of a Venturi-type bubble generator for MSR, Nucl. Technol. 37, 120605–1–120605–6 (2014) [Google Scholar]
  14. G. Ding, J. Chen, C. Wang, C. Shang, M. Liu, X. Cai, Y. Ji, Structural design and numerical simulation of axial-swirling type micro-bubble generator, Guocheng Gongcheng Xuebao/Chin. J. Process Eng. 18, 934–941 (2018) [Google Scholar]
  15. L. Zhao, L. Sun, J. Tang, L. Hu, Z. Mo, H. Liu, G. Xie, Investigation on bubble motion in liquid flowing through a rectangular Venturi channel, in 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, ACM (2017) [Google Scholar]
  16. Q. Li, D. Ming, M. Lei, X. Guo, J. Liu, H. Zhu, L. Fang, Z. Wang, Numerical investigation on the coupled mechanisms of bubble breakup in a Venturi-type bubble generator, Eng. Appl. Comp. Fluid. 16, 229–247 (2022) [Google Scholar]
  17. H.Y. Bie, Y.X. Li, L.C. Xue, Y. Wang, G. Liu, Z.R. Hao, W.Z. An, A visualized investigation of bubble breakup in a swirl-Venturi bubble generator, Aiche J. 69, 14 (2023) [Google Scholar]
  18. S.J. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag (2022) [Google Scholar]
  19. H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flows, Imperial College London 8, A385 (1996) [Google Scholar]
  20. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39, 201–225 (1981) [Google Scholar]
  21. S.S. Deshpande, L. Anumolu, M.F. Trujillo, Evaluating the performance of the two-phase flow solver interFoam, Comput. Sci. Discov. 5, 014016 (2013) [Google Scholar]
  22. D.J.E. Harvie, M.R. Davidson, M. Rudman, An analysis of parasitic current generation in volume of fluid simulations, Appl. Math. Model. 30, 1056–1066 (2006) [CrossRef] [Google Scholar]
  23. L.L. Wang, Large eddy simulation theory and its application, J. Hohai Univ. Nat. Sci. 32, 261–265 (2004) [Google Scholar]
  24. J. Smagorinsky, General circulation experiments with the primitive equations, J. Monthly Weather Rev. 99–164 (1963) [CrossRef] [Google Scholar]
  25. M.T. Dhotre, B. Niceno, B.L. Smith, Large eddy simulation of a bubble column using dynamic sub-grid scale model, Chem. Eng. J. 136, 337–348 (2008) [CrossRef] [Google Scholar]
  26. D.K. Liliy, Proceedings of the IBM scientific computing symposium on environmental Sciencer, IBM Form no 195, 320–1951 (1967) [Google Scholar]
  27. J. Huang, L. Sun, M. Du, Z. Liang, Z. Mo, J. Tang, G. Xie, An investigation on the performance of a micro-scale Venturi bubble generator, Chem. Eng. J. 386, 120980 (2020) [Google Scholar]
  28. Z.Y. Mo, M. Du, Z.Y. Shao, G. Xie, H.T. Liu, L.C. Sun, Investigation of bubble transportation in Venturi-type bubble generator, At. Energy Sci. Technol. 50, 1034–1039 (2016) [Google Scholar]
  29. Helmholtz, XLIII. On discontinuous movements of fluids, Philos. Mag. J. Sci. London, Edinburgh Dublin 36, 337–346 (1868) [CrossRef] [Google Scholar]
  30. B. Thomson, W. Kelvin, Hydrokinetic solutions and observations, in Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (2012) [Google Scholar]
  31. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc. 1-14, 170–177 ( 1882) [CrossRef] [Google Scholar]
  32. A. Baylar, M.C. Aydin, M. Unsal, F. Ozkan, Numerical modeling of venturi flows for determining air injection rates using fluent V6. 2, Math. Comput. Appl. 14, 97–108 (2009) [MathSciNet] [Google Scholar]
  33. X.Y. Wang, Y. Shuai, H.M. Zhang, Bubble breakup in a swirl-venturi microbubble generator, Chem. Eng. J. 403, 126397 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.