Issue |
Mechanics & Industry
Volume 26, 2025
Recent advances in vibrations, noise, and their use for machine monitoring
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/meca/2024036 | |
Published online | 17 January 2025 |
- P. Morse, Some Aspects of the theory of room acoustics, J. Acoust. Soc. Am. 11, 56 (1939) [CrossRef] [Google Scholar]
- M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials, Appl. Acoust. 3, 105–116 (1970) [CrossRef] [Google Scholar]
- Y. Champoux, J.F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys. 70, 1975–1979 (1991) [CrossRef] [Google Scholar]
- P. Lueg, Process of Silencing Sound Oscillations, US Patent 2043416 (1934) [Google Scholar]
- D. Miljkovic, Active noise control: from analog to digital – last 80 years, in: 2016 39th Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2016 – Proc., 2016, 1151 [Google Scholar]
- D. Guicking, Patents on Active Control of Sound and Vibration – An Overview, Tech. rep. Universitat Gottingen, 2009 [Google Scholar]
- P. Gardonio, E. Bianchi, S.J. Elliott, Smart panel with multiple decentralized units for the control of sound transmission. Part II: design of the decentralized control units, J. Sound Vib. 274, 193 (2004) [CrossRef] [Google Scholar]
- P. Gardonio, E. Bianchi, S.J. Elliott, Smart panel with multiple decentralized units for the control of sound transmission. Part I: theoretical predictions, J. Sound Vib. 274, 163–192 (2004) [CrossRef] [Google Scholar]
- E. Bianchi, P. Gardonio, S.J. Elliott, Smart panel with multiple decentralized units for the control of sound transmission. Part III: control system implementation, J. Sound Vib. 274, 215-232 (2004) [CrossRef] [Google Scholar]
- H.F. Olson, E.G. May, Electronic sound absorber, J. Acoust. Soc. Am. 25, 1130 (1953) [CrossRef] [Google Scholar]
- D. Guicking, K. Karcher, Active impedance control for one-dimensional sound, J. Vib. Acoust. 106, 393–396 (1984) [CrossRef] [Google Scholar]
- M. Furstoss, D. Thenail, M.A. Galland, Surface impedance control for sound absorption: direct and hybrid passive/active strategies, J. Sound Vib. 203, 219–236 (1997) [CrossRef] [Google Scholar]
- D. Thenail et al., The active control of wall impedance, Acta Acust. 83, 1039 (1997) [Google Scholar]
- S. Karkar et al., Broadband nonreciprocal acoustic propagation using programmable boundary conditions: from analytical modeling to experimental implementation, Phys. Rev. Appl. 12 (2019). DOI:https://10.1103/PhysRevApplied.12.054033 [CrossRef] [Google Scholar]
- E. De Bono et al., Effect of time delay on the impedance control of a pressure-based, current driven electroacoustic absorber, J. Sound Vib. 537, 117201 (2022) [CrossRef] [Google Scholar]
- G. Gatti, M.J. Brennan, B. Tang, Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity, Mech. Syst. Signal Process. 125, 4–20 (2019) [CrossRef] [Google Scholar]
- A.F. Vakakis et al., Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I & II, Springer, 2009 [Google Scholar]
- R. Bellet et al., Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, J. Sound Vib. 329, 2768 (2010) [CrossRef] [Google Scholar]
- E. Gourdon, A.T. Savadkoohi, V.A. Vargas, Targeted energy transfer from one acoustical mode to an Helmholtz resonator with nonlinear behaviour, J. Vib. Acoust. 140 (2018) DOI:https://10.1115/1.4039960 [CrossRef] [PubMed] [Google Scholar]
- V.A. Vargas, E. Gourdon, A.T. Savadkoohi, Nonlinear behaviors of an acoustical resonator: theoretical and experimental evidences, Procedia Eng. 199, 643–648 (2017) [CrossRef] [Google Scholar]
- X. Guo, H. Lissek, R. Fleury, Improving sound absorption through nonlinear active electroacoustic resonators, Phys. Rev. Appl. 13 (2020) DOI:https://10.1103/PhysRevApplied.13.014018 [Google Scholar]
- E. De Bono et al., Model-inversion control to enforce tunable Duffing-like acoustical response on an electroacoustic resonator at low excitation levels, J. Sound Vib. 570, 118070 (2024) [CrossRef] [Google Scholar]
- B. Cochelin, P. Herzog, P. Olivier Mattei, Experimental evidence of energy pumping in acoustics, C. R. Mec. 334, 639 (2006) [CrossRef] [Google Scholar]
- L.I. Manevitch, The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables, Nonlinear Dyn. 25, 95–109 (2001) [CrossRef] [Google Scholar]
- C.-H. Lamarque et al., Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink, Acta Mech. 221, 175-200 (2011) [CrossRef] [Google Scholar]
- G. Hurel, A.T. Savadkoohi, C.H. Lamarque, Passive control of a two degrees-of-freedom pendulum by a non-smooth absorber, Nonlinear Dyn. 98, 3025-3036 (2019) [CrossRef] [Google Scholar]
- A. Ture Savadkoohi et al., Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies, Nonlinear Dyn. 86, 2145 (2016) [CrossRef] [Google Scholar]
- A. Labetoulle, A. Ture Savadkoohi, E. Gourdon, Detection of different dynamics of two coupled oscillators including a time-dependent cubic nonlinearity, Acta Mech. 233, 259–290 (2022) [CrossRef] [MathSciNet] [Google Scholar]
- C. da Silveira Zanin et al., Nonlinear vibratory energy exchanges in a meta-cell, Int. J. Non. Linear. Mech. 146, 104148 (2022) [CrossRef] [Google Scholar]
- D. Bitar et al., Extended complexification method to study nonlinear passive control, Nonlinear Dyn. 99, 1433-1450 (2020) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.