Open Access
Issue |
Mechanics & Industry
Volume 26, 2025
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/meca/2024040 | |
Published online | 18 February 2025 |
- B.M. Ibrahım, S.S. Mohammed, E. Balci, A review on comparison between NiTi-based and Cu-based shape memory alloys, J. Phys. Chem. Funct. Mater. 6, 40–50 (2023) [Google Scholar]
- S. Palaniyappan et al., Surface treatment strategies and their impact on the material behavior and interfacial adhesion strength of shape memory alloy NiTi wire integrated in glass fiber-reinforced polymer laminate structures, Materials 17, 3513 (2024) [CrossRef] [PubMed] [Google Scholar]
- J. Bhattacharjee, S. Roy, Smart materials for sustainable energy, Nat. Resour. Conserv. Res. 7, 5536 (2024) [CrossRef] [Google Scholar]
- M. Vollmer, A. Bauer, T. Niendorf, Combined shape memory alloy phenomena: a novel approach to extend applications of shape memory alloys, Mater. Lett. 347, 134643 (2023) [CrossRef] [Google Scholar]
- N. Lokesh, U.S. Mallik, A.G. Shivasiddaramaiaha, T.N. Mohith, N. Praveen, Characterization and evaluation of shape memory effect of Cu-Zn-Al shape memory alloy, J. Mines Met. Fuels 70, 324–331 (2022) [Google Scholar]
- A.A. Karakalas, T.T. Machairas, D.C. Lagoudas, D.A. Saravanos, Quantification of shape memory alloy damping capabilities through the prediction of inherent behavioral aspects, Shape Mem. Superelasticity 7, 7–29 (2021) [CrossRef] [Google Scholar]
- N. Farjam, M. Nematollahi, M.T. Andani, M.J. Mahtabi, M. Elahinia, Effects of size and geometry on the thermomechanical properties of additively manufactured NiTi shape memory alloy, Int. J. Adv. Manuf. Technol. 107, 3145–3154 (2020) [CrossRef] [Google Scholar]
- A.S. Hamdy Makhlouf, N.Y. Abu-Thabit, D. Ferretiz, Chapter 12-Shape-memory coatings, polymers, and alloys with self-healing functionality for medical and industrial applications, in Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications, edited by A.S.H. Makhlouf, N.Y. Abu-Thabit (Elsevier, 2020), pp. 335–358 [Google Scholar]
- H. Khodaverdi, M. Mohri, E. Ghafoori, A.S. Ghorabaei, M. Nili-Ahmadabadi, Enhanced pseudoelasticity of an Fe-Mn-Si-based shape memory alloy by applying microstructural engineering through recrystallization and precipitation, J. Mater. Res. Technol. 21, 2999–3013 (2022) [CrossRef] [Google Scholar]
- Q. Shen et al., Effect of cold-drawn-induced amorphous phase on microstructure and pseudoelasticity properties of nanocrystalline NiTi alloys, J. Mater. Res. Technol. 26, 7936–7946 (2023) [CrossRef] [Google Scholar]
- Z. Kang, A. Yu, Y. Wang, Y. Qin, Q. Wu, H. Liu, Finite element method of functionally graded shape memory alloy based on UMAT, Mathematics 12, 282 (2024) [CrossRef] [Google Scholar]
- F. Furgiuele, P. Magarò, C. Maletta, E. Sgambitterra, Functional and structural fatigue of pseudoelastic NiTi: global vs local thermo-mechanical response, Shape Mem. Superelasticity 6, 242–255 (2020) [CrossRef] [Google Scholar]
- C. Bouvet, S. Calloch, C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, Eur. J. Mech. A/Solids 23, 37–61 (2004) [CrossRef] [MathSciNet] [Google Scholar]
- M. Zhan, J. Liu, D. Wang, X. Chen, L. Zhang, S. Wang, Optimized neural network prediction model of shape memory alloy and its application for structural vibration control, Materials 14, 6593 (2021) [CrossRef] [Google Scholar]
- P. Shabani Nezhad, The effect of microstructural defects and geometrical features on fatigue behavior of superelastic nitinol wires, Diss. 1934(2023). Available: https://epublications.marquette.edu/dissertations_mu/3030 [Google Scholar]
- L.-W. Tseng, P.-Y. Lee, N.-H. Lu, Y.-T. Hsu, C.-H. Chen, Shape memory properties and microstructure of FeNiCoAlTaB shape memory alloys, Crystals 13, 852 (2023) [CrossRef] [Google Scholar]
- B. Meddour, H. Zedira, H. Djebaili, One dimensional modeling of the shape memory effect, Model. Numer. Simul. Mater. Sci. 3, 124–128 (2013) [Google Scholar]
- R.V.R. Kumar, S. Prashantha, S.H. Adarsh, P.C.A. Kumara, A Review Article on FeMnAlNi shape memory alloy, J. Mines Met. Fuels 70(8A), 355–359 (2022) [CrossRef] [Google Scholar]
- N. Choudhary, D. Kaur, Shape memory alloy thin films and heterostructures for MEMS applications: a review, Sens. Actuators Phys. 242, 162–181 (2016) [CrossRef] [Google Scholar]
- T.W. Duering, D. Stockel, A. Keeley, Actuator and work production devices, in Engineering Aspects of Shape Memory Alloys, edited by T.W. Duering, K.N. Melton, D. Stockel, C.M. Wayman (Butterworth-Helnemann, London, 1990), pp. 181–194 [Google Scholar]
- J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des. 1980–2015 56, 1078–1113 (2014) [CrossRef] [Google Scholar]
- D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, Springer-Verlag New York Inc.; 2008th edition (2 July 2008); Springer-Verlag New York Inc [Google Scholar]
- E. Patoor, A. Eberhardt, M. Berveiller, Micromechanical modelling of superelasticity in shape memory alloys, Pitman Res. Notes Math. 296, 38–54 (1993) [Google Scholar]
- K.L. Ng, Q.P. Sun, Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes, Mech. Mater. 38, 41–56 (2006), https://doi.org/10.1016/j.mechmat.2005.05.008 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.