Open Access
Issue
Mechanics & Industry
Volume 26, 2025
Article Number 4
Number of page(s) 24
DOI https://doi.org/10.1051/meca/2024039
Published online 27 January 2025
  1. F. Greban, Découpabilité du cuivre et des alliages cuivreux, PhD thesis, Université de Franche-Comté, 2006 [Google Scholar]
  2. K. BergstrOm, S. Kivivuori, S. Osenius, A. Korhonen, Computer aided design of a progressive die, in: J.L. Chenot, E. Oñate (Eds.), Modelling of Metal Forming Processes, Springer Netherlands, Dordrecht, 1988, pp. 155–162 [CrossRef] [Google Scholar]
  3. J.C. Choi, B.M. Kim, C. Kim, An automated progressive process planning and die design and working system for blanking or piercing and bending of a sheet metal product, Int. J. Adv. Manuf. Technol. 15, 485–497 (1999) [CrossRef] [Google Scholar]
  4. B.C. Hwang, S.M. Han, W.B. Bae, C. Kim, Development of an automated progressive design system with multiple processes (piercing, bending, and deep drawing) for manufacturing products, Int. J. Adv. Manuf. Technol. 43, 644–653 (2009) [CrossRef] [Google Scholar]
  5. S. Kumar, R. Singh, An automated design system for progressive die, Expert Syst. Appl. 38, 4482–4489 (2011) [CrossRef] [Google Scholar]
  6. M. Ghatrehnaby, B. Arezoo, A fully automated nesting and piloting system for progressive dies, J. Mater. Process. Technol. 209, 525–535 (2009) [CrossRef] [Google Scholar]
  7. J. Li, A. Nee, B. Cheok, Integrated feature-based modelling and process planning of bending operations in progressive die design, Int. J. Adv. Manuf. Technol. 20, 883–895 (2002) [CrossRef] [Google Scholar]
  8. M.A. Farsi, B. Arezoo, V. Alizadeh, S. Mirzaee, The study of spring-back in wipe-bending processes for perforated components, Proc. Inst. Mech. Eng. Part B 225, 2007–2014 (2011) [CrossRef] [Google Scholar]
  9. S. Tumkor, K. Pochiraju, Progressive die strip layout optimization for minimum unbalanced moments, J. Manuf. Sci. Eng. 132, 024502 (2010) [CrossRef] [Google Scholar]
  10. S.-B. Sim, S.-T. Lee, C.-H. Jang, A study on the development of center carrier type progressive die for U-bending part process, J. Mater. Process. Technol. 153–154, 1005–1010 (2004) [CrossRef] [Google Scholar]
  11. D. Farioli, E. Kaya, A. Fumagalli, P. Cattaneo, M. Strano, A data-based tool failure prevention approach in progressive die stamping, J. Manuf. Mater. Process. 7. 92 (2023) [Google Scholar]
  12. F. Steinlehner, M. Ott, D. Budnick, A. Weinschenk, S. Lau-mann, M. Worswick, W. Volk, Development of inline closed-loop vibration control in progressive die stamping using finite element simulation, IOP Conf. Ser. Mater. Sci. Eng. 967, 012035 (2020) [CrossRef] [Google Scholar]
  13. Y. Gen, W. Yunong, Progressive stamping process and die design of high strength steel automobile structural parts, J. Phys. Conf. Ser. 1605, 012063 (2020) [Google Scholar]
  14. G. Ouaidat, A. Lagroum, A. Kacem, S. Thuillier, Uncertainties on the mechanical behaviour of bronze sheets: influence on the failure in bending, Int. J. Mater. Forming 17, 29 (2024) [CrossRef] [Google Scholar]
  15. C.-L. Huang, M. Xu, S. Cui, Z. Li, H. Fang, P. Wang, Copper-induced ripple effects by the expanding electric vehicle fleet: a crisis or an opportunity, Resources Conserv. Recycl. 161, 104861 (2020) [CrossRef] [Google Scholar]
  16. A. Mkaddem, D. Saidane, Experimental approach and RSM procedure on the examination of springback in wiping-die bending processes, J. Mater. Process. Technol. 189, 325–333 (2007) [CrossRef] [Google Scholar]
  17. N. Le Maoût, Analyse des procédés de sertissage de tôles métalliques, PhD thesis, Université de Bretagne-Sud, 2009 [Google Scholar]
  18. A.H. Alghtani, Analysis and optimization of springback in sheet metal forming, PhD thesis, University of Leeds, publisher: University of Leeds, 2015 [Google Scholar]
  19. H. Livatyali, T. Altan, Prediction and elimination of spring-back in straight flanging using computer aided design methods. Part 1. Experimental investigations, J. Mater. Process. Technol. 117, 262–268 (2001) [CrossRef] [Google Scholar]
  20. K. Chan, S. Wang, The effect of a coating on the springback of integrated circuit leadframes, J. Mater. Process. Technol. 116, 231–234 (2001) [CrossRef] [Google Scholar]
  21. M. Fu, K. Chan, W. Lee, L. Chan, Springback in the roller forming of integrated circuit leadframes, J. Mater. Process. Technol. 66, 107–111 (1997) [CrossRef] [Google Scholar]
  22. D. Briesenick, M. Liewald, Efficient net shape forming of high-strength sheet metal parts by Transversal Compression Drawing, Int. J. Adv. Manuf. Technol. 130, 3053–3063 (2024) [CrossRef] [Google Scholar]
  23. C. Lange, Etude physique et modélisation numérique du procédé de sertissage de pièces de carrosserie, PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2006 [Google Scholar]
  24. F. Gassara, R. Hambli, T. Bouraoui, F.E. Halouani, D. Soulat, Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm, Int. J. Adv. Manuf. Technol. 44, 61–67 (2009) [CrossRef] [Google Scholar]
  25. H. Livatyali, H. Wu, T. Altan, Prediction and elimination of springback in straight flanging using computer-aided design methods. Part 2. FEM predictions and tool design, J. Mater. Process. Technol. 120, 348–354 (2002) [CrossRef] [Google Scholar]
  26. E. Gildemyn, Caractérisation des procédés de fabrication de pièces de securité automobile. Optimisation multiobjectifs de la mise en forme, Theses, Arts et Métiers ParisTech (Angers), 2008 [Google Scholar]
  27. R. Bahloul, Optimisation of the bending process of high strength low alloy sheet mtetal, PhD thesis, Arts et Métiers ParisTech (Angers), 2005 [Google Scholar]
  28. S. Ben-Elechi, R. Bahloul, A. Potiron, Optimisation des paramètres du procédé de pliage en tombé de bord par plan d'expériences numérique et méthode des surfaces de réponse, Méc. Ind. 7, 475–485 (2006) [Google Scholar]
  29. R. Kazan, M. Fırat, A.E. Tiryaki, Prediction of spring-back in wipe-bending process of sheet metal using neural network, Mater. Des. 30, 418–423 (2009) [CrossRef] [Google Scholar]
  30. F. Adzima, T. Balan, P.Y. Manach, Springback prediction for a mechanical micro connector using CPFEM based numerical simulations, Int. J. Mater. Forming 13, 649–659 (2020) [CrossRef] [Google Scholar]
  31. F.-K. Chen, S.-F. Ko, Deformation analysis of springback in L-bending of sheet metal, J. Achiev. Mater. Manuf. Eng. 18 (2006) [Google Scholar]
  32. H.H. Bok, K.S. Oh, Y.S. Kang, Simulation of springback in cyclic wipe-bending, IOP Conf. Ser. Mater. Sci. Eng. 967, 012073 (2020) [CrossRef] [Google Scholar]
  33. R. Bahloul, A. Mkaddem, P. Dal Santo, A. Potiron, D. Saïdane, Optimisation du procédé de pliage pour la mise en forme de piecès de sécurité automobile, Eur. J. Computat. Mech. 17, 323–348 (2008) [CrossRef] [Google Scholar]
  34. M.C. Oliveira, D.M. Neto, A. Pereira, J.L. Alves, L. Menezes, Evaluating the influence of the deformation of the forming tools in the thickness distribution along the wall of a cylindrical cup, IOP Conf. Ser. Mater. Sci. Eng. 1238, 012079 (2022) [CrossRef] [Google Scholar]
  35. A. Lagroum, Conception virtuelle de la mise en forme progressive d'alliages de cuivre pour des applications électroniques, PhD thesis, Université Bretagne Sud, 2022 [Google Scholar]
  36. J.L. Jordan, C.R. Siviour, G. Sunny, C. Bramlette, J.E. Spowart, Strain rate-dependant mechanical properties of OFHC copper, J. Mater. Sci. 48, 7134–7141 (2013) [CrossRef] [Google Scholar]
  37. C. Durand, H. Song, R. Bigot, Parametric identification on a dynamic behavior model for a forging machine, in: Materials Research Proceedings 28, 2023, pp. 649–656 [Google Scholar]
  38. T. Xu, Q. Xia, X. Long, G. Buffa, Vibration Control of a High-Speed Precision Servo Numerically Controlled Punching Press: Multidomain Simulation and Experiments, Shock and Vibration 2017, 2017 pp. 1–17 [Google Scholar]
  39. F. Jia, F. Xu, Dynamic analysis of closed high-speed precision press: modeling, simulation and experiments, Proc. Inst. Mech. Eng. Part C 228, 2383–2401 (2014) [Google Scholar]
  40. International Digital Image Correlation Society, E. Jones, M. Iadicola, R. Bigger, B. Blaysat, C. Boo, M. Grewer, J. Hu, A. Jones, M. Klein, K. Raghavan, P. Reu, T. Schmidt, T. Siebert, M. Simenson, D. Turner, A. Vieira, T. Weikert, A Good Practices Guide for Digital Image Correlation, Tech. rep., 1st edn., International Digital Image Correlation Society, 2018 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.