Issue |
Mechanics & Industry
Volume 20, Number 1, 2019
|
|
---|---|---|
Article Number | 104 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/meca/2019003 | |
Published online | 28 March 2019 |
Regular Article
Stability analysis of a clutch system with uncertain parameters using sparse polynomial chaos expansions
INSA CVL, Univ. Orléans, Univ. Tours, LaMé EA 7494, 3 Rue de la Chocolaterie, CS 23410, 41034 Blois Cedex, France
* e-mail: baptiste.bergeot@insa-cvl.fr
Received:
31
August
2018
Accepted:
3
January
2019
In vehicle transmission systems, frictional forces acting during the sliding phase of the clutch engagement may produce unwanted vibrations. The prediction of the stability of a clutch system remains however a laborious task, as the parameters which have the highest impact on the stability, such as the friction law or the damping, lead to significant dispersions and must be considered as uncertain in such studies. Non-intrusive generalized polynomial chaos (gPC) expansions have already been used in this context. However, the number of deterministic model evaluations (i.e. the computational cost) required to compute the PC coefficients becomes prohibitive for large numbers of uncertain parameters. The sparse polynomial chaos, recently developed by Blatman and Sudret, may overcome this issue. In this paper, the method has been applied to the stability analysis of a clutch system owning up to eight uncertain parameters. Comparisons with the reference Monte Carlo method and classic full PC expansions show that sparse PC expansions allow substantial computational cost reductions while ensuring a high accuracy of the results.
Key words: Stability / vibration / clutch / friction system / sparse polynomial chaos / regression
© D.T. Kieu et al., published by EDP Sciences 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.